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Abstract

The theory of algebraic hierarchical decomposition of finite state automata
is an important and well developed branch of theoretical computer science
(Krohn-Rhodes Theory). Beyond this it gives a general model for some
important aspects of our cognitive capabilities and also provides possible
means for constructing artificial cognitive systems: a Krohn-Rhodes decom-
position may serve as a formal model of understanding since we comprehend
the world around us in terms of hierarchical representations. In order to
investigate formal models of understanding using this approach, we need
efficient tools but despite the significance of the theory there has been no
computational implementation until this work.

Here the main aim was to open up the vast space of these decompositions
by developing a computational toolkit and to make the initial steps of the
exploration. Two different decomposition methods were implemented: the
V ∪T and the holonomy decomposition. Since the holonomy method, unlike
the V ∪T method, gives decompositions of reasonable lengths, it was chosen
for a more detailed study.

In studying the holonomy decomposition our main focus is to develop
techniques which enable us to calculate the decompositions efficiently, since
eventually we would like to apply the decompositions for real-world prob-
lems. As the most crucial part is finding the the group components we
present several different ways for solving this problem. Then we investigate
actual decompositions generated by the holonomy method: automata with
some spatial structure illustrating the core structure of the holonomy de-
composition, cases for showing interesting properties of the decomposition
(length of the decomposition, number of states of a component), and the
decomposition of finite residue class rings of integers modulo n.

Finally we analyse the applicability of the holonomy decompositions as
formal theories of understanding, and delineate the directions for further
research.
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Chapter 1

Introduction

For any finite system a working hierarchical model can be generated auto-
matically.

If we would like to summarize the main theme of this work very shortly,
then we could say that it investigates what the last issue of the previous
statement mentions: here we give actual algorithms for generating hierar-
chical models, and once we have the computational tools, we generate models
for some particularly interesting finite systems. The statement above has
been known to be true for a long time [KR65], so our task is only to start
using this result. But this is still a long story.

1.1 The Concept

1.1.1 Models

“The best material model of a cat is another, or preferably the same, cat.”

A. Rosenblueth [with Norbert Wiener], Philosophy of Science 1945.

What is a model of something? Abstractly speaking, the model is any
system which is not thing itself, but it shows some relevant features of the
thing or phenomenon to be modeled. In some respect the model should be
easier to handle otherwise the thing could be its own model, (and a map
with scale 1 : 1 is pretty useless). By a working model we mean that not
just the static structure of the original phenomenon is captured, but the
model can contain processes as well. Building a model of a system usually
involves the identification of its subsystems and their relations. Therefore,
the problem of decomposition naturally arises here.

1



2 Chapter 1. Introduction

1.1.2 Decompositions

Despite some relatively new scientific approaches1, scientific understand-
ing still proceeds by taking apart things, identifying their components.
Molecules are built up from atoms, atoms from elementary particles, a hu-
man brain contains billions of neuron cells, a piece of software is written
as code lines of many instructions, etc. By listing the components, we can
get to know what are the ingredients for building a given system. Therefore
the usefulness of a decomposition method does not need any other justifica-
tion. But as we go further during a scientific research, the next and more
important question is that how those components are put together, how the
subsystems are related to each other. We will show that the actual way of
wiring the components together is more interesting than the list of the com-
ponents, and this fact is often neglected. Here we emphasize the usefulness
of hierarchical compositions, but this needs some justification.

1.1.3 Hierarchies

We comprehend the world around us in terms of hierarchical representa-
tions. We recognize social relations, the structure of organizations by the
ranking of the members according to some order [Sim96]. We study the phys-
ical world along the spatial and size hierarchies from string theory to the
galaxies. Software development methodologies like object-orientation struc-
ture for computer programs use the hierarchies of both data and procedures
[Boo91]. Our decimal base number notation system is also inherently hier-
archical. Even the current debate on the definition of emergence revolves
around the notion of hierarchical levels. It is beyond question that among
our cognitive models hierarchies are pervasive. One might say that this is
a constraint on our cognition albeit a very fruitful one, thanks to the nice
properties of hierarchies:

• information flow between levels are restricted enabling modularity
(also within one level with parallel components).

• generalization and specialization are natural operations realized by
taking subsets of levels in either direction up or down the hierarchy.

It’s not the case that all systems are hierarchical, rather the opposite
is true. Natural systems have tangled hierarchies, hierarchies with strange
loops: “The Strange Loop phenomenon occurs whenever, by moving up-
wards (or downwards) through the levels of some hierarchical system, we
unexpectedly find ourselves right back where we started” [Hof79]. But even

1A nice example is the notion of emergence, where the system is understood by de-
scribing simple low-level rules that spontaneously lead to complex behavior [Joh01].
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in those cases in understanding them we first use a hierarchical way then we
introduce the strange loops as a deviation from hierarchies.

We will not consider the philosophical question here, whether hierarchies
are out there in reality or are they just guiding principles of our minds when
comprehending the world around us. For the sake of simplicity here it is
enough to assume the latter proposition only.

1.1.4 Coordinate Systems

By a coordinate system we mean a notational system (in the broadest possi-
ble sense), with which we can address the components and their relations in
a decomposition, thus gaining a convenient way for grasping the structure
of the original phenomenon. An obvious example is the Descartes coordi-
nate system, where we can uniquely specify any point of the n-dimensional
space by n coordinates. However, this is an example of an inherently non-
hierarchical coordinate system for a totally homogenous system. In general
different coordinates have different roles, addressing parts of the system
different in size, function, etc. The natural example of a hierarchical coor-
dinate system is our decimal positional number notation system: different
coordinates correspond to different magnitudes.

Here we consider coordinate systems that are hierarchical and alge-
braically produced for and from a finite state automata.

1.1.5 Aspects Do Matter

Things can be described in several forms. Each form represents the same
structure but from a different viewpoint and from each distinct viewpoint
something else can be seen. Just as walking around a building may support
a deeper understanding of it. What is the building for? How big is it?
How many people are in there? Examining several sides may shed light
even on the inner structure. It might happen that we do not gain any new
information from a different aspect so the different point of views vary in
their usability in this respect. Moreover, for different purposes they have
different values. For example you can enter the building on the front but
not on the rear side. Using different approaches, evaluating them on the
base of current purposes, motivations, switching between them – these are
probably deeply in our cognitive structure.

It is beyond question that in mathematics these techniques are basic.
Given a mathematical structure which is hard to study but it can be mapped
to an another domain of well-known constructions, this way the problem is
almost solved.
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1.2 The Substrate

1.2.1 Automata

Regarding the nature of the models discussed here we have a restriction:
they should be described as finite state automata. We claim that this is
not really a constraint. Automaton is a concept which is general enough to
grasp many interesting phenomena of the world around us. Anything which
has states and changes its current state responding to external input can be
considered as an automaton.

Many phenomena fit into this scheme: organisms responding quickly
to the changes of the environment, chemical reactions, many aspects of real
computers, especially language processing, and so on. The wide applicability
is due to the very strong abstraction which focuses on the very important
notion of change [Ash56].

1.2.2 Semigroups

Groups are mathematical structures capturing the notion of symmetry (re-
versible processes, or operations that can be undone). Algebraically semi-
groups are the generalization of the concept of the group. Semigroups can
capture irreversibility as well, not just symmetry like groups, i.e. there can
be operations that cannot be undone. The only one requirement is that the
passage of time should be preserved by the associativity of the operation.

In this work the role of the semigroups is that they are the algebraic
aspects of automata: the input symbols of an automaton can be considered
as transformations of the state set, as functions. Therefore we can use the
precise mathematical tools available in algebra for studying the phenomena
being described as an automaton. Philosophically, this aspect also gives
us a very nice level of abstraction for computational structures: we can
consider processors and memory as the very same resource, since they are
not distinguished in the semigroup.

1.2.3 Emulation

It should not be surprising that in general, when we decompose something,
i.e. identify its components and determine the rules how to put them to-
gether, finally we do not get back exactly the same thing. If it is “smaller”,
then we got the decomposition wrong (or we can say that we have an ap-
proximation), if it is “bigger” in some sense, then we talk about emulation.

Emulation is an easy concept in computer science: a machine A2 emu-
lates A1 if A2 can do everything what A1 can do. It might be able to do
more, but we should be able to use A2 instead of A1 in any case.

Clearly, it is an important issue how to interpret certain operations of
A2 as the operations of A1. We will consider this in full detail. In alge-
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braic terms, this will be done by the mappings of the homomorphism from
subautomaton for establishing the division (emulation), see Section 2.1.5.

1.2.4 Finiteness, Computational Complexity

Here we deal only with finite structures, but this does not mean that the
theory is unable to deal with infinite structures (e.g. [Neh92]). We have the
restriction, since we focus on computational implementations and applica-
tions of the theory.

Our computers are finite, plants, animals are finite and we humans are
also finite in time and in space as well. The actual loss we have is the pathol-
ogy of infinite machines only (many uncomputable functions and undecid-
able problems). Of course the argument is right that a Turing-machine has
more computational power than a finite-state machine or a stack-machine.
But let’s consider the case of palindromes. In reality we do not have to deal
with palindromes with arbitrary length, and if words to be checked are finite
then we can tackle the recognition problem with a finite-state machine.

If we stay within the finite realm, we still have serious difficulties. Cal-
culating a decomposition is not a simple task, and at every stage of the
algorithm, combinatorial explosions may come up. But there is some hope
due to the following considerations:

• For practical purposes we need a reasonably good decomposition, not
the most optimal (e.g. the shortest possible) one.

• There might be domains of interesting special problems which admit
an efficiently calculable decomposition.

• We can use only approximations (not fully calculating all the hierar-
chical levels).

Unfortunately we cannot entirely get rid of undecidable problems even
in the finite case. For example the potential divisibility in finite semigroups
is undecidable [KS98].

1.3 Research Questions and Motivations

1.3.1 Feasibility

Our very first question is more than obvious: Is it really possible? Can we
calculate such decompositions? Clearly, in the 60’s the available computa-
tional power of computers was not enough for a challenge like this. But
today’s computers are more powerful, and the software development tools
and computer algebra systems give a lot of help in attacking difficult prob-
lems. At least it is time to try.
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There is another issue which makes this work timely. Being a mathe-
matician and being a computer scientist (or a programmer), though they
are quite close to each other, still require different mind sets. Proving that a
given mathematical object exists concludes the work of the mathematician,
but that is exactly the beginning of the work of the programmers, since that
given element should be found possibly in a very huge set.

So our first research issue stated precisely is the following:

0. It is necessary to investigate the computational feasibility of the de-
composition algorithms in order to develop the required software. This
requires the comparison and evaluation of different decomposition meth-
ods.

The ordinal number 0 here emphasizes that the computational tool for
decompositions is not the end product of this work, rather a prerequisite for
the actual research.

1.3.2 Exploration and Exploitation

Once we have the computational tool, we can analyse such decompositions
that are otherwise not available by manual calculations. Thus, we can start
a systematical exploration of specific classes of finite state automata.

1. Study interesting examples for gaining knowledge about the nature of
automatically generated decompositions.

The improvement of the decomposition algorithms also remains in focus,
since we assume that the more we know about an algorithm the better we
can perform.

2. How can we use theoretical insights gained in the exploration phase
for improving the decomposition methods?

1.3.3 Formal Models of Understanding

We mentioned before that a cascaded decomposition can be considered as a
coordinate system for understanding a given phenomenon. Possible applica-
tions of this idea pop up in all different fields where we deal with hierarchical
models of systems: physics, where the top level2 coordinates can be consid-
ered as conserved quantities of the system, while the symmetries comprise
the bottom level [Rho71]. In software-development the formal models of
understanding might provide tools for automated programming, since de-
veloping a piece of software is just creating a sophisticated cognitive model

2There is an ambiguity between the different meanings of top and bottom level, here
we refer the most independent level as top.
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[Neh94]. In artificial intelligence [Neh96a] embodied agents equiped with the
ability of creating formal models from data coming from their sensors could
change their representation of the environment on the fly having a great
advantage over purely reactive agents or agents with fixed representations.
Recently biological sciences produce a huge amount of data that remain
largely uninterpreted so far. As a prominent example one might mention the
hype around the sequencing of the human genome, which, while undoubtly
representing great progress, comprises a big finite description that we only
partially understand. In evolutionary biology it is still contentious how
complexity changes in the course of evolution. This is due to the unclarified
notions of complexity, which can be clearly defined in terms of hierarchical
decompositions [NR00].

This short summary of possible applications shows that this research is
not only motivated but that even the prospects for the near future results
could potentially be highly rewarding. Therefore our final research question,
which is only partially answered here is the following.

3. How can we use a cascaded decomposition as a coordinate system
providing a formal model of understanding?

1.4 Roadmap

The first chapter introduced the fundamental notions needed for understand-
ing this research. The definitions here are very informal, they stay at a very
abstract, almost philosophical level, but they should help in understanding
the details of what follows.

Chapter 2 presents the mathematical background and fixes the notation
used in subsequent chapters.

Chapter 3 briefly introduces the Krohn-Rhodes Prime Decomposition
Theorem, which is the basis of this work.

Chapter 4 describes an iterative proof technique for the Krohn-Rhodes
Theorem, the V ∪ T technique, and discusses its applicability for practical
problems.

Chapter 5 contains the full proof of the Holonomy Decomposition The-
orem.

Chapter 6 discusses the general details of a computational implementa-
tion for the holonomy decomposition.

Chapter 7 deals with the main problem of constructing the holonomy
components. It describes two different methods for solving the problem.

Chapter 8 shows some preliminary applications of the computational
tool.

Chapter 9 summarizes the achievements and delineates the possible di-
rections for future research.

Wherever it makes sense, there is a section with illustrative examples.



Chapter 2

Mathematical Preliminaries

and Notations

“Let no one unversed in geometry enter here.”
Written over the gate of Plato’s Academy.

Here we establish the close connection between finite state automata
and semigroups. The related notions, division and emulation, wreath and
cascaded product, etc., show that automata and transformations are just
the two different sides of the same coin. For the sake of brevity, only those
notions are defined which are needed for the proofs in this work, for more
details see [DN05, Arb68, Eil76].

The notation applied here is slightly different compared to previous
works. We tried to change it for the better, to promote understanding.
We use lowercase letters for elements of sets, capital letters for sets, and
calligraphic letters for sets of sets or for relations.

We denote the set of integers {0, 1, . . . , n− 1} by n.

2.1 Semigroups and Groups

2.1.1 Semigroups

A semigroup is a set S equipped with an associative binary operation µ :
S×S→S. Instead of µ(s1, s2) we write s1 ·s2 or more briefly s1s2. If A and B
are subsets of a semigroup, then AB means the set {ab : a ∈ A, b ∈ B}. An
element 1 is the identity element of S if s1 = 1s = s, ∀s ∈ S. The identity is
unique if it exists. By S1 we denote S if it has an identity otherwise S∪{1}.
By SI we mean S∪{I} where I is a new element that acts as an identity on
S and itself, the identity of S (if it exists) ceases to be an identity as it fails
on I. An element r ∈ S is called a right-zero element of S if sr = r, for all
s ∈ S. Symmetrically, ` ∈ S is a left-zero element if `s = `, for all s ∈ S. In
addition, o ∈ S is the zero element if os = so = o, ∀s ∈ S. The zero element

8
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is also unique if it exists. The order of a semigroup S is its cardinality |S|.
We say that a subset A of S generates the semigroup 〈A〉 = S if all elements
of S can be expressed as a finite product of elements in A. A semigroup S
is aperiodic if for each element s ∈ S there is a positive natural number n
such that sn = sn+1; for a finite semigroup this means that it contains no
nontrivial subgroups.

2.1.2 Groups

A semigroup is a monoid if it has an identity element. A monoid is a group
if for every s ∈ S there is an inverse s−1 ∈ S such that ss−1 = s−1s = 1.
A subset T of a semigroup S is a subsemigroup if it is closed under the
multiplication of S. Subgroups are defined analogously. A subgroup H of
a group G is normal if gH = Hg ∀g ∈ G. A nontrivial group is simple if it
has no nontrivial proper normal subgroups.

Another definition of aperiodicity can be given by using subgroups: A
finite semigroup each of whose subgroups has only one element is called
aperiodic.

We denote the one element trivial group simply by the identity 1, and
if it is a trivial permutation group (see below) then we also indicate the
number of states it acts on: 1n, i.e (n, 1). Cn is the cyclic group of order
n, Sn is the symmetric group on n points. Dn is the dihedral group of
order n. Gn:k denotes a semidirect product Cn o Ck. Gn is a group with
order n with trivial Frattini subgroup1, where the Frattini subgroup is the
intersection of maximal subgroups (or equivalently, the subgroup of non-
generator elements).

2.1.3 Transformations and Permutations

In algebraic automata theory we often use the following representation of
abstract semigroups and groups.

For a nonvoid finite set A, a mapping ϕ : A → A is called a trans-
formation of A. We denote the identity transformation by 1A. Instead of(

1 2 ... n
i1 i2 ... in

)
we use a simpler notation (i1i2 . . . in), which is not to be con-

fused with group theoretical cyclic notation. If the mapping is bijective,
then it is a permutation. The image of ϕ is defined as {aϕ : a ∈ A} denoted
by im(ϕ). If the image of a mapping is a singleton then the mapping is
constant. The rank of a transformation is the cardinality of its image. The
set T of all transformations of A form a semigroup under the operation of
function composition of transformations and it is called the full transforma-
tion semigroup denoted by TA = (A, T ). If S is a subsemigroup of T then
(A,S) is called a transformation semigroup on A (or briefly a ts), and we

1For identifying certain groups in our automated decompositions we used the Small
Groups data library for GAP[gap02].
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say that S acts on A. There is a subtle issue regarding (A,S I): S might be
a monoid already, but the identity element might not be the identity map
on A, therefore in the case of transformation semigroups we add the identity
transformation as the new identity element, (A,SI) = (A,S ∪ {1A}).

(A,S) is a permutation group if each element s ∈ S acts on A by per-
mutation. We write a · s for the image of state a under the transformation
s, and we have (a · s1) · s2 = a · (s1s2) for all a ∈ A, s1, s2 ∈ S. It is a
basic fact of semigroup theory that every finite semigroup can be repre-
sented as a ts using the right regular representation (S1, S) where S acts
on S1 by multiplication on the right [CP67]. If (A,S) is a transformation
semigroup, we denote by (A,S) the transformation semigroup with trans-
formations S = {t | t ∈ S or t is constant}.

For the canonical state set, we use the notation n for n points {0, . . . , n−
1}.

2.1.4 Green’s Relations

A subsemigroup I of S is called an ideal if SIS ⊆ I, and a left ideal if
SI ⊆ I. If s ∈ S then S1sS1 is the principal ideal of s, and S1s is the
left principal ideal of s. Right ideals and right principal ideals are defined
analogously.

Analogous to divisibility the Green’s relations L,R and J are defined as
follows: For s1, s2 ∈ S, s1 ≤L s2 if S1s1 ⊆ S1s2, or equivalently (emphasizing
the similarity to divisibility) if there exists some x ∈ S1 such that s1 = xs2.
This comprises a transitive relation. If s1 ≤L s2 and s2 ≤L s1 then we write
s1 L s2, i.e. they generate the same left principal ideals, and we say that s1

and s2 are L-equivalent. R-equivalence is defined dually. Similarly,s1 ≤J s2,
if S1s1S

1 ⊆ S1s2S
1, or equivalently if there exist some x, y ∈ S1 such that

s1 = xs2y. Thus, two elements of a semigroup are J -equivalent if they
generate the same principal ideals. The J -equivalence class of s ∈ S is
denoted by J(s) (similarly L(s), R(s)).

2.1.5 Homomorphisms

Let S and T be semigroups with multiplications ◦, � respectively and having
a mapping ψ : S → T such that ψ(s1 ◦ s2) = ψ(s1) �ψ(s2), for all s1, s2 ∈ S.
Then we say that ψ is a homomorphism from S to T, a mapping which pre-
serves products. If a homomorphism is bijective then it is an isomorphism.

Another definition of simple groups can be given by using homomor-
phisms: a nontrivial group is simple if its homomorphic images are just
itself and the one element group (up to isomorphism).
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Division

We say that a transformation semigroup (A,S) divides (B, T ) denoted by
(A,S) | (B, T ) if we can choose for each a ∈ A at least one ã ∈ B as a lift
and and for each s ∈ S at least one s̃ ∈ T as a lift, such that the following
conditions hold. We denote the set of lifts of a state a by Λ(a) (and Λ(s)
for a transformation s respectively).

1. Each member of B (resp. T ) is a lift of at most one element of A
(resp. S), i.e. the (non-empty) lift sets for distinct elements are non-
intersecting. Formally: Λ(a) 6= ∅, Λ(s) 6= ∅, and Λ(x) ∩ Λ(y) 6= ∅ =⇒
x = y.

2. If ã is any lift of a and s̃ is any lift of s, then ã · s̃ is some lift of a · s,
i.e. the products are respected.

Note that in general Λ(a) · Λ(s) ⊆ Λ(a · s), instead of being equal.

a s a · s

Λ(a) Λ(s) Λ(a · s)

=

⊆

·

·

action in (A,S)

action in (B, T )

Lift sets for states and transformations might have their internal struc-
ture which do not play any role in the division. Moreover the union of lift sets
might be a proper subset of B or T . Thus (B, T ) is “bigger, richer in struc-
ture, can do more”, therefore we also say (B, T ) covers or emulates (A,S).
In practice, to establish the division it is enough to lift the states and a gen-
erator set for the semigroup and check Λ(a) ·Λ(s1) · · ·Λ(sn) ⊆ Λ(a ·s1 · · · sn)
for all n ≥ 1, si ∈ G, a ∈ A where G is a generator set for S [DN05].

2.1.6 Words and the Free Semigroup.

Let X a set of letters be called the alphabet. A word over the alphabet X
is a finite sequence of elements of X: (x1, x2, . . . , xn), xi ∈ X. The empty
word is denoted by λ. X+ is the set of all non-empty finite words. X+

is a semigroup under the operation of concatenation, it is called the free
semigroup on X. X∗ = X+ ∪ {λ} is the free monoid on X.

A word v ∈ X∗ is a factor of a word z ∈ X∗ if there exist words u,w ∈ X∗
such that z = uvw. v is a left factor of z if there exists a word w ∈ X ∗ such
that z = vw. A word w is primitive if it is not a power of another word.
For any nonempty word w, the smallest factor u such that w = un, n ≥ 1 is
the primitive root of w. We also use the notation u =

√
w.

Standard references are [Shy01] and [Lot83].
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2.2 Finite State Automata

By a finite state automaton, we mean a triple A = (A,X, δ) where A is the
(finite nonempty) state set, X is the input alphabet and δ : A × X → A
is the transition function. We do not explicitly consider the output of the
automaton as it can be recovered from the state and the input symbol. We
tacitly use the state as the output.

We can naturally extend the transition function for words i.e. sequences
of input symbols: for the empty word δ(a, λ) = a, and for arbitrary words
u, v ∈ X∗, δ(a, uv) = δ(δ(a, u), v). There is a natural equivalence relation,
the congruence induced by A on words u ≡ v if δ(a, u) = δ(a, v) ∀a ∈ A,
i.e. identifying words with the same action on A. The characteristic semi-
group S(A), also called the semigroup of the automaton, is the set equiva-
lence classes X+/ ≡ of this congruence, with associative operation induced
by concatenation. With the characteristic semigroup we can handle an au-
tomaton A as a transformation semigroup (A,S(A)). Conversely if S is a
semigroup then the corresponding automaton is AS = (S1, S), where the
transition function is the right action of S on S1. Clearly, S(AS) ∼= S.

An automaton A emulates another one B with states B if every com-
putation which can be done in B can be done in A as well, i.e. (B,S(B))
divides (A,S(A)).

Using automata terminology constant mappings in transformation semi-
groups are often called resets. A permutation-reset automaton is an automa-
ton such that each of its inputs acts either as a permutation or a constant
map on states.

The state transition graph D(A) of an automaton A = (A,X, δ) is a
digraph with A as the set of vertices and (a, x, b) is a labeled edge if a ·x = b,
where a, b ∈ A, x ∈ X. It is a loop-edge if a = b. A path is a sequence of
edges (ai, xi, bi) 1 ≤ i ≤ n with ai+1 = bi for all 1 ≤ i < n, and the label of
the path is x1 . . . xn. A loop is a path with bn = a1.

2.3 Wreath Product

Although the concept of the wreath product is not so complicated, it is not
as easy to present the intuitive idea how the loop-free cascaded product
works. After reading the formal definition a figure may shed light on how
state transitions happen in the product (Fig. 2.2). It is also a great help first
to consider a simpler product with no dependence between the components.

Let (An, Sn), . . . , (A1, S1) be transformation semigroups called compo-
nents. The indices 1, . . . , n are called coordinates. The direct product (An, Sn)×
· · ·× (A1, S1) is the ts (An×· · ·×A1, Sn×· · ·×S1) with the componentwise
action

(an, . . . , a1) · (sn, . . . , s1) = (an · sn, . . . , a1 · s1).
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s1∈S1

s2∈S2

s3∈S3

(A1, S1)

(A2, S2)

(A3, S3)

b1∈A1

b2∈A2

b3∈A3

Figure 2.1: State transition in the direct product (A3, S3) × (A2, S2) ×
(A1, S1). The transformation (s3, s2, s1) is applied to state (a3, a2, a1) yield-
ing (b3, b2, b1) = (a3 · s3, a2 · s2, a1 · s1). We use the state as the output of the
automaton.

f1∈S1

f2 :A1→S2

f3 :A2×A1→S3

(A1, S1)

(A2, S2)

(A3, S3)

b1∈A1

b2∈A2

b3∈A3

a1∈A1

a1
a2∈A2

Figure 2.2: State transition in the wreath product (A3, S3) o (A2, S2) o
(A1, S1). The transformation (f3, f2, f1) is applied to state (a3, a2, a1) yield-
ing (b3, b2, b1) = (a3 ·f3(a2, a1), a2 ·f2(a1), a1 ·f1). The black bars denote the
applications of functions f2, f3 according to hierarchical dependence. Note
that the applications of these functions happen exactly at the same moment
since their arguments are the previous states of other components, therefore
there is no need to wait for the other components to calculate the new states.
We use the state as the output of the automaton.
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Direct product is also called parallel composition as the components’
state transitions do not depend on each other, and the order of the compo-
nents does not really matter up to isomorphism (Fig. 2.1).

Now we introduce an order-dependent connection between the compo-
nents. Let A = An × . . . × A1 and TA the full ts on A. Let S be the
subsemigroup of TA consisting of all transformations s : A → A satisfy-
ing the condition of hierarchical dependence of coordinates: Denote pk :
A → Ak the kth projection map, then for each k = 1, . . . , n there exists
fk : Ak−1 × · · · ×A1 → Sk such that

pk

(
(an, . . . , ak+1, ak, . . . , a1) · s

)
= ak · fk(ak−1, . . . , a1) = a′k

where s ∈ S, ak, a
′
k ∈ Ak, k = 1, . . . , n. That is, the new kth coordinate a′k

resulting from the action of s depends only on the values of the old first k
coordinates and on the transformation s. Moreover, it is given by acting with
an element of Sk which depends only on s and (ak−1, . . . , a1). We can write
this transformation as the ordered list of these functions: s = (fn, . . . , f1).
fi gives the component action in the ith position. We call these functions
dependency functions.

Then the transformation semigroup (A,S) = (An, Sn)o· · · o(A1, S1) is the
wreath product of transformation semigroups (An, Sn), . . . , (A1, S1). Reading
from left to right the last component is the top level of the hierarchy.

The multiplication in the wreath product is carried out by concatenat-
ing functions. Let s = (fn, . . . , f1) and t = (gn, . . . , g1) elements of S and
for the sake of brevity, where the arguments of the functions are straight-
forward, they are not displayed, e.g. fi() means fi(ai−1, . . . , a1). Then
s · t = (mn, . . . ,m1) can be given by:

m1 = f1 · g1 (2.1)

since they are elements of the semigroup S1 it is normal semigroup multi-
plication. However for lower levels it is more complicated and can be given
in respect a particular state (an, . . . , a1):

mi = fi() · gi

(
ai−1 · fi−1(), ai−2 · fi−2(), . . . , a1 · f1

)
, (2.2)

and clearly mi is again a function of (ai−1, . . . , a1) to Si. If we write
(a′n, . . . , a

′
1) for (an, . . . , a1) · s then the equation can be abbreviated to

mi = fi() · gi(a
′
i−1, . . . , a

′
1).

We also use the notation f s
i for a dependency function, where i indicates

the hierarchical level as above, and s is a given cascaded transformation just
to make it clear where the function belongs to.

By a cascaded state we mean a tuple of component states as above, and
by a cascaded action we mean an actual tuple of component actions (this
is not to be confused with the cascaded transformation, which is a tuple of
dependency functions).
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2.4 Examples

2.4.1 Faces of an Automaton

Here we show a very simple automaton in several different ways to emphasize
the fact that though being the same thing, it does matter in which form of
the automaton we try to work with.

Example 2.1 Let X = {x, y}, A = {a, b, c}, and δ as following:

δ(a, x) = a, δ(a, y) = b,
δ(b, x) = c, δ(b, y) = b,
δ(c, x) = a, δ(c, y) = b.

This is a description of a very simple machine. It’s not hard to find out
what it does but other forms of the machine are more easily understandable.

Transition Table

Transition tables describe a machine by giving the values of the transition
function for each state-input pair. It is basically a shorthand notation for
defining the δ function.

input
x y

a a b
state b c b

c a b

It’s easy to comprehend for humans when the size of the table is relatively
small. For larger machines it still helps in tracking down the state transitions
for a given input sequence. It also gives a straightforward data structure for
representing abstract machines in a computer program.

Diagram

For human perception and comprehension the most suitable representation
is visual. The diagram form can be considered as a flowchart or illustra-
tion of the inner workings of the machine, actually the algorithm which it
implements.

a b c

x y

y
x

y

x
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Matrix

The machine action is described by boolean matrices and a specific state is
represented by a vector. For each input symbol there is a matrix which has
one row and column for each machine state. The i, j entry is 1 if the corre-
sponding input symbol causes a state transition from state i to j, otherwise
it is 0. States are represented as vectors.

a b c
a
b
c



1 0 0
0 0 1
1 0 0




x-matrix

a b c
a
b
c




0 1 0
0 1 0
0 1 0




y-matrix

a =
[
1 0 0

]
b =

[
0 1 0

]
c =

[
0 0 1

]

The state transitions caused by an input sequence starting from a spec-
ified initial state can be found by just multiplying the corresponding state
vector on the right with the matrices according to the input sequence.

Regular expression

If we consider a machine as a tool for recognizing a language then the most
useful notation is a regular expression. In our example, if we have the initial
state a and the accepting state c, then the machine accepts all words of x’s
and y’s that end in yx. So the accepted language is:

L = {y, x}∗{yx}

Function

Let X and A sets. Then a machine is a function f : X ∗ → A, i.e. map-
ping the sequences of input symbols to states (which can be considered as
outputs).

Semigroup

The characteristic semigroup of our automaton consists of 4 elements cor-
responding to input sequences: x = [1, 3, 1], y = [2, 2, 2], z = [3, 3, 3], v =
[1, 1, 1], where z corresponds to the input sequence yx and v to yxx. The
operation is given by the following multiplication table:

x y z v

x v y z v
y z y z v
z v y z v
v v y z v
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2.4.2 Building a Modulo 4 Counter Hierarchically

Since wreath products are usually far too complex objects to describe them
in full detail, we use a very small example for demonstrating the cascaded
composition.

Example 2.2 We would like to build a modulo 4 counter as a wreath product
of two modulo 2 counters. By a counter modulo n we mean the permutation
group Cn = (n, 〈+1〉), where n = {0, 1, . . . , n− 1}. We would like to build

C4 | C2 o C2.

The state set of the C2 o C2 is 2 × 2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, which
is basically the binary representation of the integers from 0 to 3. For the
transformation we need to lift {+1,+2,+3,+4}, by describing them as a
2-tuple of dependency functions.
We can give a lift easily for the operation of incrementing by 1. On the top
(least dependent) level it is always +1, on the next level the action depends
on whether we have a carry or not.

+̂1:

f+1
1 () = +1

f+1
2 (0) = i

f+1
2 (1) = +1

where i = +1 ·+1 is the identity. Now we calculate the lift of +2 as +̂1 · +̂1
according to equations 2.1 and 2.2.

+̂2:

f+2
1 () = f+1

1 () · f+1
1 () = +1 ·+1 = i

f+2
2 (0) = f+1

2 (0) · f+1
2 (1) = i ·+1 = +1

f+2
2 (1) = f+1

2 (1) · f+1
2 (0) = +1 · i = +1

Note, that when defining f+2
2 (0) the second factor is f+1

2 (1) instead of
f+1
2 (0), since the state transition by f+1

1 () has been made.

+̂3 calculated as +̂2 · +̂1:

f+3
1 () = f+2

1 () · f+1
1 () = i ·+1 = +1

f+3
2 (0) = f+2

2 (0) · f+1
2 (0) = +1 · i = +1

f+3
2 (1) = f+2

2 (1) · f+1
2 (1) = +1 ·+1 = i
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since f+2
1 () = i.

+̂4 calculated as +̂3 · +̂1:

f+4
1 () = f+3

1 () · f+1
1 () = +1 ·+1 = i

f+4
2 (0) = f+3

2 (0) · f+1
2 (1) = +1 ·+1 = i

f+4
2 (1) = f+3

2 (1) · f+1
2 (0) = i · i = i

and it is the identity of the cascaded product, as expected: +̂4 = î.
Now let’s see how the action works in the wreath product.

0̂ · +̂1 = (0, 0) · +̂1 = (0 · f+1
2 (0), 0 · f+1

1 ()) = (0 · i, 0 ·+1) = (0, 1) = 1̂

which is 1̂. Now let’s see what happens if we add 3 to 1 in the wreath
product:

1̂ · +̂3 = (0, 1) · +̂3 = (0 · f+3
2 (1), 1 · f+3

1 ()) = (0 · i, 1 ·+1) = (0, 0) = 0̂.

Note that his example is very special in several respects. The components
are groups, and we have embedding (4, C4) ↪→ (2, C2) o (2, C2), instead of
the more general division.

2.5 Summary

We have presented the very basic notions of algebraic automata theory with
emphasis on the description of the wreath product from the computer sci-
entist’s viewpoint.



Chapter 3

The Krohn-Rhodes Theory

The previous chapter introduced mathematical notions and structures but it
did not tell anything explaining why we need them. Now it is time to show
the prize for the efforts. We present the Krohn-Rhodes Prime Decomposition
Theorem, which is a theorem about the algebraic decomposition of finite
state automata. The importance of the theorem described here and its
implications should convince the reader that it is worth going on. To shed
light on the main ideas here we use a special cognitive tool; we expose the
key points with the help of a metaphor.

We restrict considerations from now on to finite automata.

3.1 The Prime Decomposition Metaphor

“The essence of metaphor is understanding and experiencing one kind of
thing in terms of another.” [LJ80] Metaphor can be considered as a cognitive
aid, when we understand an unknown thing in terms of a well-known one.
Here the familiar thing is the set of integers, and the less understood phe-
nomenon is finite computation, more precisely finite automata. We would
like to see the structure of finite computations, how more complicated com-
putations are built from simpler pieces, what are the elementary building
blocks like the primes which can not be divided further. For most of the
time science is about decomposing, disassembling things and trying to un-
derstand how the pieces are put together. In the case of integers the way of
putting together numbers is simply multiplication, in the case of automata
it is more complicated, we need to use cascaded composition. The basic
building blocks of automata are also more complicated, there are two types
of them, and they have inner structure as well.

19
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3.2 The Building Blocks

Roughly speaking, we have two different kinds of computational operations:
reversible and irreversible ones. For instance, if we move some content of
the memory to another empty location, that is reversible, since we can move
it back. But if we overwrite a nonempty part of the memory, then it is irre-
versible, since there is no way to restore the previously stored data. Corre-
sponding to these two types we have two kinds of components: simple group
automata for reversible and the flip-flop automaton F for the irreversible
aspect.

Finite simple group automata are automata whose characteristic semi-
groups are simple groups. Finite simple groups are now well-described math-
ematical objects, although they are not as simple as the name suggests since
their classification [GLS94] needs long proofs.

The flip-flop automaton F can be thought of as a device capable of
storing one bit: we have two states A = {0, 1} and three symbols in the
input alphabet X = {set0,set1,read}. The read is the identity operation,
but since we consider the state as the output of the automaton we can think
of it as retrieving what state was set before.

0 1

set0

set1

set0,read set1,read

In semigroup theoretic terms it has two resets and one identity, hence its
other name is two-state identity-reset automaton.

3.3 Wiring the Components

Despite their potential in fostering understanding, every metaphor has its
limits. Our prime decomposition metaphor might suggest that the com-
ponents are the most important and the way they are put together does
not really matter. But this is false. Unlike the decomposition of integers,
where we use arithmetic multiplication due to commutativity the order of
the components is arbitrary, in the case of automata we use the wreath prod-
uct to put automata together in a hierarchical cascaded way. As we have
already seen in Example 2.2, this composition is rather complicated. Even
in a very simple case, the explicit description of the dependency functions is
very lengthy. On the other hand, as we will see, this is the most interesting
part as well.
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Neglecting the dependency functions has another reason as well, not just
the natural limitation of the decomposition metaphor. One can prove the
Krohn-Rhodes Prime Decomposition Theorem without explicitly consider-
ing the dependency functions. Shortly, mathematicians do not necessarily
need them. They come into focus when we study actual “working” cascaded
automata.

3.4 The Krohn-Rhodes Prime Decomposition The-

orem

Now we are able to state the main theorem, the basis of this current work.

Theorem 3.1 (Krohn-Rhodes Prime Decomposition Theorem) Given
a finite automaton A, then A it can be emulated by a cascade product of com-
ponents from {AF,AG1

, . . . ,AGn}, where F is the flip-flop and Gi, 1 ≤ i ≤
k are simple groups dividing the characteristic semigroup S(A).

Conversely, let B = B1 o · · · o Bn be a cascade product of automata which
emulates the automaton A. If a subsemigroup S of the flip-flop monoid
S(F) or a simple group S is a homomorphic image of a subsemigroup of
S(A), then S is a homomorphic image of a subsemigroup of S(Bt) for some
component automaton Bt (t ∈ {1, . . . , n}).

The proof here omitted since the next two chapter contains the sketch
of one proof and a detailed description of another one.

3.5 Historical Remarks

There are various proofs for the Krohn-Rhodes Theorem, thus a historical
summary of their origins might be useful to clarify the situation and to
justify the need for refining the proof, namely the work presented here.

The first proof [KR65] was presented in the context of finite state ma-
chines which made the argument somewhat difficult to follow. After that
new algebraic techniques were introduced. The V ∪ T -technique [KRT68]
uses the Green relations of the semigroup of transformations, but it produces
a very long list of components (including repetitions), therefore it cannot
be used for practical purposes (see Section 4.2). A more recent version of
the V ∪ T -technique [Neh96b] has partially overcome this problem, but it is
still not efficient enough for computational implementations. Zeiger took a
different route using covers (more general concept of tiling) [Zei67, Zei68].
Later this approach was called the holonomy decomposition. Zeiger’s origi-
nal proof contained some inaccuracies, and these were corrected in [Gin68].
The weakness of Zeiger’s method is in the way of refining covers. Refining
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only one equivalence class at once yields unnecessary long list of compo-
nents. The cure for this is the height function which shows exactly what
equivalence classes can be refined in parallel. This was first described by
Eilenberg, who made the proof [Eil76] of the holonomy decomposition using
partial functions, then Holcombe [Hol82] improved it by identifying cases
when between some particular consecutive levels direct product can be used
instead of wreath product. Recently, Nehaniv gave a proof [DN05] with a
computational implementation in mind. The current proof is the extension
and culmination of his work by emphasizing the separated circuitry of the
cascaded product and it comes together with working software [ENN03].

Although for practical implementations we usually consider only finite
cases, it is worth noting that there are versions of the proof for arbitrary
semigroups [HLR88, EN02] (and others). There are also completely different
proofs [Ési00, RW89a, RW89b] based on kernels.

3.6 Summary

The Krohn-Rhodes Theory is the basis of this work, and its potential is so
high that we will still continue developing and exploiting the implications
of the theory.
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The V ∪ T -technique

Since we have several different proofs for the Krohn-Rhodes Theory, the
question naturally arises: which method should be implemented compu-
tationally? Due to its simplicity, our first choice is the so called V ∪ T -
technique. This method is one of the earliest proof techniques [KRT68]. It
works with semigroups and uses the right regular representation when ts’s
are needed for the resulting cascaded components.

4.1 The Iterative Construction

The main idea of the algorithm can be summarized in the proof of the fol-
lowing lemma (for the sake of brevity in terms of semigroups). The iterative
nature of this lemma gives the working mechanism of the decomposition.

Lemma 4.1 ([KRT68]) Let S be a finite semigroup. Then either

(a) S is left simple, i.e. S is the direct product of a group with A`, for some
set A with multiplication xy = x (the elements are left zeros),

(b) S is a finite monogenic semigroup (generated by one element), or

(c) there exists a proper left ideal V ⊂ S and a proper subsemigroup T ⊂ S
such that S = V ∪ T.

Proof: Let J be a maximal J class of S. Either J is regular or is a one-point
null J class. Suppose J is regular and has only one L class. Then J is a
subsemigroup of S. Let F (J) be the ideal S − J . If F (J) = ∅, J = S is left
simple, case (a). If F (J) 6= ∅, let V = F (J) and T = J , case (c).

Suppose J is regular and has more than one L class. Let L be one. If
F (J) = ∅, let V = L and T = J − L = S − L, case (c). If F (J) 6= ∅, let
V = L ∪ F (J) and T = (J − L) ∪ F (J), case (c).

23
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If J is not regular, then it is a one-point null J class. Let J = {q}, and
Q = 〈q〉. Either Q = S, case (b), or let V = F (J) and T = Q, case (c).
This exhausts the possibilities.

Let’s denote |L| the number of L-classes. Then the proof can be visu-
alized with following diagram. The arrows from a node represent different
decisions.
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J class
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(b)
V = S − J
T = Q
(c)

J = S
left simple

(a)

V = S − J
T = J
(c)

V = L
T = J − L = S − L

(c)

V = L ∪ (S − J)
T = (J − L) ∪ (S − J)

(c)

�

The first two cases are easy to decompose into flip-flops and groups but
the V ∪T technique stops when finding monogenic or left simple semigroups.
A left simple semigroups is a product of a group and a left zero semigroups
(every element is a left zero element). A monogenic semigroup divides the
direct product of its fuse and its cyclic (simple and abelian) subgroup1. For
further details see [KRT68].

In the third case we have

(S1, S) | (V I , V
I
) o (T I , T

I
).

Then we iterate the process by applying the lemma again to V and T
(they are both subsemigroups of S) in order expanding the list of components
until monogenic or left simple semigroups appear.

1This is the usual decomposition of monogenic semigroups. The fuse (or tail) is the
aperiodic part.
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4.2 Results

4.2.1 The Full Transformation Semigroup

Full transformation semigroups are specially good cases for testing a de-
composition algorithm, since regarding their order they are the biggest semi-
groups on n points. But, we know [Eil76] a nice and compact decomposition
for them:

Tn | (2, S2) o . . . o (n-1, Sn−1) o (n, Sn).

So, in the case of T we expect T2 | (2, S2). But using V ∪ T we get:
T2 | (1, 1)o(1, 1)o(2, S2), which seems to be slightly redundant, we have more
hierarchical levels than needed. If we act on more points the redundancy
becomes worse:

Semigroup Order #Hierarchical levels by V ∪ T
T2 4 3

T3 27 19

T4 256 401

At T4 the number of hierarchical levels exceeds the order of the semigroup
being decomposed. Getting more hierarchical components than nn for an
automaton with n states is far from being efficient. This inefficiency of the
V ∪ T algorithm originates from the iterative step: V and T may overlap
and thus subcomponents may appear again and again. However a variant
of the V ∪ T proof exists, the L+-decomposition, which avoids much of the
duplications [Neh96b], although not fully alleviating this problem.

4.2.2 More Extreme Examples

The full transformation semigroup might be considered as a special example,
since regarding its order it is the biggest semigroup on n states. One might
suspect that the length of the decomposition is due to to the symmetric
subgroup, but this is not the case. Now we check an aperiodic example.

Example 4.2 An elevator is an automaton with n states (the storeys) and
two input symbols u, d (going up and going down) realizing the following
transformations:

u(i) =

{
i+ 1 i < n
n i = n

d(i) =

{
i− 1 i > 1
1 i = 1

The state transition graph basically is a ‘line’ on which we can move
in two directions (see Fig. 4.1). Decomposing elevators and examining the
length of the decompositions give the following result:



26 Chapter 4. The V ∪ T -technique

1
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u

Figure 4.1: An elevator automaton with 5 states.

Number of states Order #Hierarchical levels by V ∪ T
2 2 2

3 7 10

4 17 50

5 34 290

The growth of the number of hierarchical levels is worse than in the case of
the full transformation semigroup. Again, most of the components are one
element trivial semigroups.

4.3 Summary

The simplicity of the V ∪ T method turned out to be deceptive, since the
decomposition it provides is unusably complex due to its redundancy. We
think it might be possible that in later research, when our knowledge of al-
gebraic hierarchical decompositions is more advanced than currently, we will
return to this method or to some of its variants. However, for the time being
we completely abandon V ∪ T decompositions for practical/computational
applications.
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The Holonomy

Decomposition

Now we turn to a different method with the following promising features:
it does not just retain the information about the action on the state set
(which is completely ignored in V ∪ T since it works with right regular
representations), but the action is used in every aspect of the decomposition.

In order to state the theorem, which is somewhat different from the
original Krohn-Rhodes Prime Decomposition Theorem (see Theorem 3.1),
we first need to give a roadmap to the constructive proof.

5.1 Holonomy Decomposition Theorem

The holonomy decomposition originates from improving1 Zeiger’s method
of proving the Krohn-Rhodes Theorem [Zei67, Gin68, Eil76, DN05]. This
algorithm works by the detailed study of how the semigroup S of an au-
tomaton (A,X, δ) acts on certain subsets of A. It looks for groups induced
by S1 permuting some set of these subsets of A. These groups are called
the holonomy groups. These groups are the building blocks for the compo-
nents of the decomposition. As we go deeper in the hierarchy of the cascade
composition we have components that act on a set of subsets each having
smaller cardinality.

Sketch of the algorithm to obtain a holonomy decomposition: First cal-
culate the set of images of transformations in S. From now on, let I denote
this set extended by A itself and its singletons. On I there is a preorder
relation called subduction defined. A subset P is subduction related to a
subset Q if P is contained in the resulting set of acting by some s ∈ S1 on
Q, i.e. P ⊆ Q · s. The mutual relation of elements induces an associated

1The improvement is that the components are decomposed in parallel whenever it is
possible.

27
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equivalence relation P ≡ Q ⇐⇒ P ≤ Q and Q ≤ P . The set of equiv-
alence classes are partially ordered by the subduction relation. The set of
equivalence classes and their partial order are called the subduction picture.
The tiles BP of a subset P (P ∈ I, |P | > 1) are its maximal proper subsets
in I. The union of its tiles equals to P . The length of a longest strict path
from a singleton to a subset P in the partial order of subduction equivalence
classes defines the height of the subsets within the equivalence class of P .
Consequently singletons have height 0. Equivalence classes with the same
height are on the same hierarchical level. The height of an automaton h(A)
is the height h(A) of its state set A, and this gives the number of hierarchi-
cal levels. The inclusion relation of the sets of tiles for each element Q ∈ I
form the tiling picture. The holonomy group HQ of Q is the group (arising
from the action of the elements of S1 on Q) permuting the tile set BQ of Q.
Then the holonomy decomposition component (Bi,Hi) of one hierarchical
level i is a permutation-reset ts and it is the direct product of the holonomy
permutation groups (BQ,HQ) belonging to the representative elements of
equivalence classes with height i augmented with the constant mappings.

Theorem 5.1 (Holonomy Decomposition [Eil76, DN05]) Let (A,S) be
a finite transformation semigroup then (A,S) divides a wreath product of
its holonomy permutation-reset transformation semigroups (B1,H1) o · · · o
(Bh,Hh), where h is the height of A.

This strong formulation of the first part of the Krohn-Rhodes theorem is
slightly different from the original since the components here are groups ex-
tended with constants and not simple groups and the divisors of the flip-flop.
But these permutation-reset components can be easily decomposed into flip-
flops and groups [KRT68]. Moreover the groups can be further decomposed
into a series of simple groups using the Lagrange Coordinate Decomposition
Theorem and Jordan-Hölder Theorem [Hal59, KRT68, DN05].

Note that the top level of the hierarchy for the holonomy decomposition
is the component with the highest index, not 1. This is due to the importance
of height function in determining the decomposition’s structure.

Now the aim of the proof is clear and we can vaguely see the path leading
to that goal, so it is time to dive into the details of the decomposition.

5.2 Relations of the Extended Set of Images

Here we consider relations defined on the image set of the characteristic
semigroup. The structure determined by these relations form the skeleton
for the decomposition.
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5.2.1 The Extended Set of Images

For studying automata it is a common technique that we investigate how
an automaton acts on the powerset 2A of its state set A. Here we use a
potentially smaller set of subsets I ⊆ 2A, the extended set of images. The
extended set of images of A is defined by:

I = {A · s | s ∈ S} ∪ {A} ∪ {{a} | a ∈ A}

or more briefly
I = {A · s | s ∈ SI} ∪ {{a} | a ∈ A}

where I acts as the identity transformation on A.
In other words, I is basically the set of all distinct images of transfor-

mations in SI and all the singletons of A.
Regarding the size of I the worst case is the full ts on A, when I = 2A,

thus we can have at most 2n elements.

5.2.2 Inclusion

As I ⊆ 2A we naturally have the set-theoretical inclusion relation (I,⊆).
Clearly, this relation is transitive, reflexive and antisymmetric, thus it is a
partial order. Minimal elements are the singletons and the unique maximal
element is A itself. The inclusion relation is independent of the action of
the semigroup (or one can say, after seeing the subsequent relations, that
the inclusion uses the identity transformation).

5.2.3 Image Relation

The fact that an element P ∈ I is an image of another element Q, is deter-
mined by a transformation of S. Therefore, the ’being an image of’ relation
can be formulated like:

P E Q ⇐⇒ there exists s ∈ SI , P = Q · s (P,Q ∈ I) (5.1)

This relation is transitive (combining transformations) and reflexive(identity
transformation), i.e. preorder.

5.2.4 The Subduction Relation and the Skeleton

Combining the inclusion and the image relation we have a relation called
the subduction relation given by

P ≤ Q ⇐⇒ there exists s ∈ SI , P ⊆ Q · s (P,Q ∈ I), (5.2)

i.e. we can transform Q to include P . Shortly written it is the relation
combination:

(I,≤) = (I,⊆) ◦ (I,E).
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The subduction relation is reflexive, since P ⊆ P · I, and it is transitive,
since if P ⊆ Q · s1 and Q ⊆ R · s2 then P ⊆ R · s1s2, thus P ≤ R. Therefore
subduction is a pre-order, and the pre-ordered (I,≤) is called the skeleton
of the ts (A,S).

As we use the monoid SI the subduction relation can be considered as
the generalization of the inclusion relation. If P ⊆ Q then P ⊆ Q · 1,
therefore P ≤ Q.

An element of S which shows the existence of the relation between two
elements is called a witness. If P is subduction related to Q, then a witness
for P ≤ Q is denoted by wPQ, thus P ⊆ Q · wPQ.

5.2.5 Equivalence Classes

We also have an equivalence relation on I by taking the mutual subduction
relation: P ≡ Q ⇐⇒ P ≤ Q and Q ≤ P. Equivalent elements of I have
the same cardinality:

Lemma 5.2 If Q ≡ P, Q, P ∈ I then |Q| = |P |.
Proof: Suppose that |Q| < |P | then P ⊆ Q · s is impossible for all s ∈ S as
there is no transformation of a finite set giving a bigger image set. �

Note that the converse is not generally true.
The set of equivalents of Q ∈ I is denoted by EQ. If subduction relation

is considered as a directed graph (I as the set of nodes, and there is an
arrow from P to Q if P ≤ Q) then the equivalence classes are exactly the
strongly connected components.

Moreover, the (arbitrarily chosen) representatives of the equivalence
classes I/≡ (and thus the classes themselves) are partially ordered, since
if P represents P and P ≤ Q, then for appropriate s, s′, s′′ ∈ S1, we have
P ⊆ Q · s, P ⊆ P · s′, and Q ⊆ Q · s′′, implying P ⊆ Q · s′′ss′, whence
P ≤ Q. By symmetry, it follows that P ≤ Q ⇐⇒ P ≤ Q. The property of
antisymmetry comes from the symmetry of the equivalence relation.

Also we write P < Q if P ≤ Q but not Q ≤ P . Thus, P < Q ⇐⇒ P <
Q.

5.2.6 Tiles and Tiling

We say P is a tile of Q, and write P ≺ Q, if P ⊂ Q and for all Z ∈ I,
P ⊆ Z ⊆ Q implies Z = P or Z = Q. It follows that P < Q as P is a
proper subset of Q.

The set of tiles ofQ for any |Q| > 1 is denoted by BQ = {P ∈ I | P ≺ Q}.
Since I contains the singletons and singletons contained in Q are subduction
related to Q at least by the identity transformation, therefore for |Q| > 1, Q
equals the union of its tiles, i.e. Q =

⋃
P∈BQ

P . For this reason the covering
BQ is called the tiling of Q. Note that the tiles may overlap.
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5.2.7 Tile Chains

A tile chain is a sequence of elements of I, where successive elements are in
tile of relation: {a} = B1 ≺ . . . ≺ Bk = A, k ≤ h. As we will see later tile
chains starting from the singleton {a} can be considered as lifts for state a.

5.2.8 Height of a Subset

The height of a member Q of I in the skeleton I,≤ is given by the function
h : I → Z, which is defined by h(Q) = 0 if Q is a singleton, and for |Q| > 1,
h(Q) is defined by the length of the longest chain(s) in the skeleton starting
from a non-singleton set and ending in Q:

h(Q) = max
i

(Q1 < · · · < Qi = Q),

where |Q1| > 1. The height of (A,S) is h = h(A).

Lemma 5.3 P ≡ Q⇒ h(P ) = h(Q).

Proof: Suppose that h(P ) = i, h(Q) = j and i < j. Therefore we have
chains like P1 < · · · < Pi = P and Q1 < · · · < Qj = Q. But following
from the equivalence we have the Q1 < · · · < Qj−1 < P , contradicting that
h(P ) < j. �

Lemma 5.4 If h(P ) = h(Q) and ∃s ∈ SI such that P · s = Q, then P ≡ Q.

Proof: The proof is indirect: Suppose Q < P , then we can append P to
a strict maximal subduction chain of Q (where the height Q comes from),
thus getting h(P ) > h(Q) contradicting our original assumption. �

5.3 Components

5.3.1 Holonomy Groups

DefineHQ to be the set of permutations of BQ induced by elements of s ∈ SI .
That is, if for s ∈ SI , the function sQ : I → I defined by sQ(z) = z · s =
{a · s | a ∈ z} (z ∈ I) restricts to sQ : BQ → BQ and permutes the elements
of BQ, then sQ ∈ HQ. HQ is called the holonomy group of Q in (A,S), and
clearly HQ divides S, and (BQ,HQ) is a permutation group and it is called
the holonomy permutation group of Q.
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5.3.2 Holonomy Permutation-Reset Transformation Semigroups

Although the holonomy groups are building blocks for the semigroup being
decomposed, but they are not sufficient for the construction, since we need to
represent the possible collapsing of states, not just permutations. Therefore
we extend a holonomy group (BQ,HQ) with constant mappings CP , P ∈
BQ. Thus, if (BQ,HQ) is a holonomy group, then (BQ,HQ) is a holonomy
transformation semigroup.

The height values define hierarchical levels. Since there can be more than
one equivalence class on the same level, components are composite. For each
i (1 ≤ i ≤ h), define (Bi,Hi) to be the direct product of the holonomy permu-
tation groups of the height i representatives in I. Then Bi =

∏
h(P )=i BP and

Hi =
∏

h(P )=iHP . Then (Bi,Hi) is a permutation group and (Bi,Hi) is the
associated holonomy permutation-reset transformation semigroup obtained
by adjoining all constant maps taking values in Bi. We denote elements of
Bi by boldface variables Bi. We also talk about positions in Bi according to
the components (equivalence classes) of the direct product. Using projection
maps πP indexed by the class representatives πP (Bi) denotes the element
of Bi in the P -position, where P ∈ I, h(P ) = i, Bi ∈ Bi. Although any
element identifies its equivalence class, we use the representative for that
purpose.

5.4 Mappings on I
5.4.1 Isomorphisms of Holonomy Groups within a Subduc-

tion Equivalence Class

First we have to show that the choice of the representative is really arbitrary,
i.e. the holonomy groups of elements of a class are isomorphic. Several
constructs defined here are used later.

Lemma 5.5 If Q ≡ P (|Q| > 1), and wPQ (resp. wQP ) is a witness for
P ≤ Q, then wPQ is a bijective mapping from Q to P (resp. P to Q).

Proof: By Lemma 5.2, Q ≡ P implies that |Q| = |P |. Thus by finiteness
Q ⊆ P · wQP implies Q = P · wQP . �

Lemma 5.6 If Q ≡ P (|Q| > 1), wPQ and wQP are witnesses respectively,
then wQPwPQ permutes the elements of P (and wPQwQP permutes the ele-
ments of Q).

Proof: According to the definition of ≡, P ≤ Q so P ⊆ Q·wPQ. Substituting
P · wQP (as Q ≤ P , Q ⊆ P · wQP ) for Q gives P ⊆ P · wQP · wPQ. Since
P is finite, P ⊆ P · wQPwPQ implies P = P · wQPwPQ (no transformations
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yield bigger images), i.e. wQPwPQ permutes the elements of P . (The proof
of the other direction is similar.) �

Since the subduction relation is a generalization of the set theoretic in-
clusion relation, if P is not related to Q then it follows that P is not a subset
of Q (but not in the opposite way). This observation is used in the proof of
the following lemma.

Lemma 5.7 If s is a bijective mapping P 7→ Q then s is also a bijective
mapping BP 7→ BQ.

Proof: Let Z ∈ BP and Z ′ = Z · s. Suppose that Z ′ is not a tile of Q, i.e.
∃Z ′′ ∈ BQ such that Z ′ ⊆ Z ′′ · u for some u ∈ SI . Then using the inverse
mapping of s we get Z∗ = Z ′′ · ŝ. But the fact that Z ⊆ Z∗ · suŝ contradicts
the original assumption that Z is a tile. �

Remark 5.8 Since bijections have inverses, bijective mappings between tilings
map tiles to equivalent tiles.

We construct bijective mappings between equivalent elements that show
isomorphism of their holonomy permutation groups. In order to do that we
need a general lemma on bijections between finite sets (Fig. 5.9).

Lemma 5.9 Let f : A → B, g : B → A bijective mappings on finite sets
A,B. Take n > 1 such (fg)n = 1A, the identity permutation of A, then
(gf)n = 1B .

Proof: The inverse of f is f̂ = g(fg)n−1, thus f f̂ = 1A. Take arbitrary
elements a ∈ A, b ∈ B, such that f maps a to b and f̂ maps b to a. Now
consider f̂f = g(fg)n−1f = (gf)n, it maps b to b, so f̂f = 1B . �

A B

f

g

f̂

f f̂ = (fg)n f̂f = (gf)n

The point of the lemma is the synchronicity of the two directions, identity
permutation appears for the same n.

Lemma 5.10 If Q ≡ P then (BQ,HQ) is isomorphic to (BP ,HP ).

Proof: To prove the isomorphism we have to find a bijective homomorphism.
Let wQP , wPQ be witnesses for the equivalence, then they are bijections, thus
wPQwQP permutes the elements ofQ, and similarly wQPwPQ permutes those
of P . By Lemma 5.7, it follows that they permute the corresponding tile
sets as well. Take n > 1 such (wPQwQP )n is the identity permutation of BQ.
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Let τ = wQP (wPQwQP )n−1, so τ is the inverse of wPQ. Then, according to
Lemma 5.9, wPQτ acts as the identity on BQ, and also τwPQ acts as the
identity on BP .

Tiles For a tile Z ∈ BQ, Z 7→ Z · wPQ ∈ BP is bijective onto BP with
inverse Z ′ 7→ Z ′ · τ ,

Permutations For a permutation sQ ∈ HQ , sQ 7→ τsQwPQ is bijective
onto HP with inverse sP 7→ wPQsP τ ,

Actions For a permutation sQ ∈ HQ and a tile Z ∈ BQ, for the map
sQ 7→ τsQwPQ ∈ HP we get (Z · wPQ) · τsQwPQ = (Z · sQ) · wPQ,

Products For two permutations sQ, tQ ∈ HQ using the same map as before
we get τ(sQtQ)wPQ = τsQwPQτtQwPQ as wPQτ is the identity on BQ.

Hence, we have an isomorphism of permutation groups. �

5.4.2 Moving within an equivalence class

With the help of bijections used in the proof of Lemma 5.10 we can define iso-
morphism mappings from the holonomy permutation group of P ∈ I to that
of the corresponding equivalence class representative P and back. These are
used in lifting states and transformations when establishing the homomor-
phism. Let P is an arbitrary chosen representative of the equivalence class
of P ∈ I. Define −→mP = wPP , thus P = P ·−→mP , i.e. mapping from (BP ,HP )
to the holonomy group (BP ,HP ) of its representative P . For the other direc-
tion, the mapping away from the representative ←−mP = wPP (wPPwPP )n−1.
It is immediate that ←−mP = −→mP = 1P .

By shifting our attention from the sets to their tilings we define the
following “selector function”:

σ(P,B) = B · ←−mP where P ∈ I, B ∈ BP

which selects a tile from the tiling of P based on a tile of the equivalence
class representative’s tiling.

P P

B′. . . . . . B. . . . . .

−→mP

←−mP

←−mP

We also define the inverse selector function by:

B = σ̂(P,B ′) = B′ · −→mP where P ∈ I, B ′ ∈ BP

which chooses a tile of P based on a tile of P .
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5.5 Lifting the State Set

The state set of the cascaded product is clearly bigger than the original
automaton’s, so one might think that there are cascaded states which have
no counterparts in the original state set. We show that this is not true,
as every cascaded state can be mapped down to an original state, and this
mapping is onto. This small result is new, and it simplifies the proof, since
we don not need to handle the exceptional case, when there is no preimage.
We also give a mapping which gives at least one cascaded state as a lift for
an original state.

5.5.1 Successive Approximation of States

Due to the hierarchical nature of the wreath product we can approximate the
original automaton’s behavior by considering only some hierarchical levels
starting from the top level. Going top-down means more detailed approxi-
mation. This involves the approximation of states by a series of subsets of
the state set, and ultimately the mapping η : B1 × . . . × Bh → A.

We define ηi : Bi × . . .× Bh → I inductively as i goes from h to 1 by

ηh(Bh) = σ(A,Bh) = Bh

which is a tile of X since the top level is not composite, and letting P =
ηi+1(Bi+1, . . . ,Bh) which we suppose already well-defined for h ≥ i+1 > 1,
we define

ηi(Bi, . . . ,Bh) =

{
P if h(P ) < i

σ(P,B) if h(P ) = i and B = πP (Bi).

In the first case we “jump over” the ith level as the approximation is already
gone forward by choosing a tile with small cardinality at some upper level.
Therefore Bi can have no affect on the value of ηi. In the second case we
are on the right hierarchical level, thus we can apply the selector function.
Observe that the only one element of Bi acts in the selection, and this is
true more generally: on all levels at most one position of Bi can affect the
value of ηi.

The selector function gives a tile of P , therefore either ηi(Bi, . . . ,Bh) ≺
ηi+1(Bi+1, . . . ,Bh) or they are equal. Therefore by omitting equal elements
we get a chain of tiles:

{a} = B1 ≺ . . . ≺ Bk = A, k ≤ h.

Since in all cases h(ηi(Bi, . . . ,Bh)) < i, η1 gives a singleton. By the unique
element of this singleton we define the value of η : B1 × . . . × Bh → A.
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5.5.2 Lifting the States

“The road up and down is one and the same.”

Heraclitus, DK22B60

We have seen that every element of B1 × · · · × Bh can be mapped down
to a singleton by η. We also have to show that η is surjective, which in this
context means that every element a ∈ A has at least one lift in B1×· · ·×Bh.
To accomplish that, we choose an arbitrary state a ∈ A and by calculating
η bottom-up instead of top-down (much like as an inverse) we construct a
(B1, . . . ,Bh) such that η(B1, . . . ,Bh) = a.

As shown before, the successive approximation has the very nice prop-
erty, that at each level only one position may affect the final result. There-
fore we need the following notation for focusing on one class and discard-
ing the others with the same height. Suppose that B ≺ P , P = P for a
P ∈ I, h(P ) = i. Then we denote by [B]P any arbitrary element of Bi

containing tile B in the P -position. Similarly for transformations, if g ∈ HP

then we write [g]P for any arbitrary element of Hi containing g in the P -
position, and identity elements in all other positions.

We create a chain of tiles: {a} = B1 ≺ . . . ≺ Bk = A, k ≤ h (like
the stages of the successive approximation). Then we map these tiles to
representative tilings, thus they will be selected during the successive ap-
proximation:

Bi = [σ̂(Bj+1, Bj)]Bj+1
where h(Bj+1) = i.

We also have to fill the levels which are jumped over. For such a level i any
fixed but arbitrary B∗ ∈ Bi is suitable.

5.6 Lifting the Semigroup

5.6.1 Lifting Transformations

For the constructive proof the explicit description of the dependency func-
tions are not needed, since it is enough to consider only the action on only
one particular state lift. Recall that an element of the wreath product
is given by describing its component actions. Thus to specify lift s̃ of
an s ∈ S to the wreath product we need to give appropriate functions
s̃i : Bi+1×· · ·×Bh →Hi for i = h, . . . , 1. (For i = h, s̃h is just an element of
Hh.) Such an h-tuple (s̃1, . . . , s̃h) of functions determines a transformation
in the wreath product. It is hard to give a nice closed formula for those
functions, instead we describe an algorithm that gives the transformations
for any particular (B1, . . .Bh).

For defining a lift for a member s of S to the wreath product we use a
simple trick. We do the successive approximation (B1, . . . ,Bh) and at each
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stage of we apply s to P getting a set P ·s ∈ I. Then we choose transforma-
tions on the levels above to approximate P · s. Roughly, if collapsing occurs
in the action of s then we use a constant map to a tile approximating the
resulting set. When determining these constant maps we may have freedom
to choose from more than one tiles if more than one contains P · s. Then
the choice B is arbitrary but fixed. If s acts as a permutation on P , then we
choose a permutation from the corresponding holonomy group. At all level
the following is true:

ηi(Bi, . . . ,Bh) · s ⊆ ηi(Bi · s̃i, . . . ,Bh · s̃h)

yielding the final equality that η(B1, . . . ,Bh) · s = η((B1, . . . ,Bh) · s̃), since
the approximation gives singletons in the end.

The construction of the lift goes inductively. On the top level we define

s̃h =

{
constant B if A · s ⊂ A, and A · s ⊆ B ≺ A
sA if A · s = A.

Going down let’s P = ηi+1(Bi+1, . . . ,Bh) and Q = ηi+1(Bi+1 · ˜si+1, . . . ,Bh ·
s̃h), then

s̃i =





constant [σ̂(Q,B)]Q if P · s ⊂ Q,h(Q) = i, and P · s ⊆ B ≺ Q,
[←−mP s

−→mQ]Q if P · s = Q and h(P ) = h(Q) = i,

arbitrary t ∈ HQ if h(Q) < i.

In the first case, collapsing of states happens, since P ·s ⊂ Q, thus we choose
a tile B of Q which contains P · s, and by using the inverse selector function
we pick up a constant map resetting to a tile of Q to make sure that B will
be given by ηi. Clearly this constant map lies in Hi.

In the second case, we have h(P ) = i = h(Q) = h(P · s) ≥ 1, whence
Q = P · s ≡ P . Therefore P = Q. This implies that ←−mP s

−→mQ represents an
element of HP , so that [←−mP s

−→mQ]P ∈ Hi. P = Q
←−mP

||yy
yy

yy
yy

y

P
s // Q

−→mQ

bbEEEEEEEEE

The last case applies on levels which are jumped over.

In all cases, s̃i(Bi+1, . . . ,Bh) ∈ Hi as required.

5.6.2 Verifying the division

We have to show that for any stage of the successive approximation, where
P approximates the state and Q the transformed state, P · s ⊆ Q holds.
This clearly holds for the top level, since Bh · s ⊆ Bh · s̃h. Now assuming
inductively that it holds for P and Q, we establish it for the next stage. We
shall consider three cases:
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Case 1 : P · s ⊂ Q, h(P ) ≤ i and h(Q) = i.

If h(P ) < i then P ′ = ηi(Bi, . . . ,Bh) = P by definition of ηi since
h(P ) < i. While if h(P ) = i then P ′ ≺ P .

P

P · s

Q
s ⊂

Now Q′ = ηi(Bi · s̃i, . . . ,Bh · s̃h) = σ(Q, σ̂(Q,πQ(Bi)))

= (Bi · s̃i)Q · ←−mQ since h(Q) = i,

= (B · −→mQ)←−mQ, where P · s ⊆ B ≺ Q according to the definition of
s̃i

= B.
Therefore P ′ · s ⊆ P · s ⊆ B = Q′, no matter the height of P .

Case 2 : h(P ) = i, h(Q) = i, P · s = Q. We have P ≡ Q, so P = Q. This
implies that s maps BP bijectively onto BQ.

P Q
s

Again P ′ = ηi(Bi, . . . ,Bh) = (Bi)P · ←−mP ≺ P and
Q′ = ηi(Bi · s̃i, . . . ,Bh · s̃h)
= (Bi · s̃i)Q · ←−mQ

= (Bi)P · (←−mP s
−→mQ)P

←−mQ since P = Q and by definition of s̃i.
= (Bi)P · ←−mP s

−→mQ
←−mQ

= (Bi)P · ←−mP s(
−→mQ
←−mQ)

= (Bi)P · ←−mP s since −→mQ
←−mQ acts as the identity on BQ.

Therefore P ′ · s = (Bi)P · ←−mP · s = Q′.

Case 3 : h(P ) < i and h(Q) < i. Then by definition of ηi, P
′ = P and

Q′ = Q, so the conclusion holds by induction hypothesis.

By induction we conclude that ηi(Bi, . . . ,Bh) · s ⊆ ηi(Bi · s̃i, . . . ,Bh · s̃h)
for all i (1 ≤ i ≤ h), all s ∈ S and all (B1, . . . ,Bh).

Moreover, lifts of distinct members of A are distinct since η is a function;
and lifts of distinct members of S are distinct: If s1 6= s2 (s1, s2 ∈ S) then
there is an a ∈ A such that a · s1 6= a · s2. Taking a lift ã of a we have
η(ã · s̃i) = η(ã) · si = a · si, but these are distinct for i = 1, 2, therefore the
lifts s̃1 and s̃2 are also distinct. This establishes the division and proves the
Holonomy Theorem. �
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5.6.3 Dependency Functions

A transformation in the wreath product of the holonomy components is a
tuple of functions: s̃ = (f1, . . . , fh) (recall Section 2.3). These functions
describe how the component action on one particular level is determined by
the states of the levels above; briefly they delineate the hierarchical depen-
dencies between the levels.

For the lifts of the generators the dependency functions are now fully
defined in all cases, since we know their values. Based on the lifting method
we have the following considerations.

Identity as independence. If the value of a dependence function is the
identity on a certain level, then the component’s state remains the
same, therefore the can be considered independent from the other co-
ordinates above in respect of the transformation defined by the depen-
dence functions2.

Levels jumped over are independent. For the levels jumped over by
the successive approximation we can define the value as the identity.
In fact any other action can be chosen, but this is consistent with the
idea of independence.

Composite components have independent parts. In the case of a com-
posite component only one component takes actual role in the trans-
formation.

5.6.4 The Circuitry of the Wreath Product

It is a well-known psychological fact in mathematics that it is a lot easier
to understand isomorphisms rather than automorphisms. It is more natural
to relate two separate things, which happen to be the same except their
description, than relating something to itself in a peculiar way. Since in
the second case we have to keep track on which side of the morphisms
we are actually. Quite similar thing happens when we want to use cascaded
machines in order to understand the original automaton’s behavior. We have
to separate cascaded machine with its circuitry, describe it independently of
the original automaton. Only after that we can characterize the morphism
between them by giving the the mappings of the coordinates onto the original
automaton.

If the transformations of the wreath product, the tuples of fully defined
dependency functions are available, then we have everything to get the cas-
caded product to work. Equations 2.1 and 2.2 show how elements can be
multiplied by using function composition.

2One might say that it is just a special kind of dependence, and that is right. The
reason why we call it independence comes from implementational issues, since if it maps
to the identity, then it does not need to be stored.
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{2}{4} {3}{1}

{1,2} {2,3}{1,4} {1,3}{2,4} {3,4}

{1,2,3}{1,2,4} {2,3,4} {1,3,4}

{1,2,3,4} 3

2

1

0

Figure 5.1: The tiling picture of T4, the full transformation semigroup on
4 points. The big boxes denote equivalence classes and within them sets
with boxes denote the arbitrary choosen equivalence class representatives.
The gray shade indicates the existence of nontrivial holonomy groups. The
arrows denote the tile of relation.

The action on the state lifts is also simple: we need to apply the depen-
dency functions, thus we get a tuple of component actions. The we apply
the actions in the component which yields a new state lift.

5.7 Examples

5.7.1 The Tricks of Tiling

Tiling may look like a simple and intuitive concept, but this can be – in gen-
eral – a bit misleading. Therefore we present some examples to show some
subtle issues that are crucial properties for computational implementation.

Tiling in the Full Transformation Semigroup

Again, we start with the full transformation semigroup due to its special
role (namely to be the ‘biggest‘) among finite transformation semigroups.
We will see that its tiling picture is quite regular, and this regularity can
be deceiving with careless generalization. By regular here we mean that for
the tiling picture of the full ts the following statements are true:
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5

3

y

1

x

y

2
x

6

y

4
x

x,y

y

x

y

x

Figure 5.2: An example automaton from Eilenberg’s book [Eil76] Exercise
9.6. The generators {x = (3 1 2 3 1 4), y = (5 4 3 3 3 3)}.

• |BQ| = |Q|, i.e. the number of tiles equals to the cardinality of the
tiled set.

• |Q| = h(Q) + 1, thus the height numbers correspond to cardinalities.

• h(P ) = h(Q)− 1 for all P ∈ BQ, i.e. there are no cross level tiles.

• P ≺ Q =⇒ P E Q, i.e. all tiles are images of the tiled sets.

whereQ ∈ I, |Q| ≥ 2, i.e. Q is a nonsingleton element of I. These properties
can be checked on Fig. 5.1. Since these properties might lure us to make
assumptions about easy solutions in a computational implementation, in the
following we show examples breaching these conditions.

For the full ts the holonomy decomposition gives the compact wreath
product (see Section 4.2.1) calculated by Eilenberg [Eil76].

5.7.2 Cross Level Tiles

We talk about cross level tiles when the difference in the height values is big-
ger than one between the tile and the tiled set. Looking at the example on
Fig. 5.2 and 5.3 shows that there are indeed such tiles. {6} ≺ {1, 2, 3, 4, 5, 6}
is somewhat ‘artificial’, since {6} is not an image of the characteristic semi-
groups’ elements. this shows the necessity of the singletons in I. Otherwise
in general, we will not be able to tile the subsets in the set of images. But
not only singletons can be cross level tiles, {3, 4, 5} ≺ {1, 2, 3, 4, 5, 6} is an-
other example, and in this case tile is a real image. The cascaded product
is built from the following components:

(3, S3) o (2, 12) o (3, 13).
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{6} {5} {2} {4}{3} {1}

{1,2,3}{3,4,5}

{1,2,3,4}

{1,2,3,4,5,6} 3

2

1

0

Figure 5.3: The tiling picture of Eilenberg’s Exercise 9.6. automaton.

5.7.3 Nonimage Tiles

Continuing the previous topic, now we are interested in tiles, that are not
images of the tiled set. This might be a crucial issue in the efficient cal-
culation of the holonomy decomposition. The problem looks simple, since
we just apply the generators to the set to be tiled, and record the maxi-
mal images. Unforutnately this does not work due to the fact that there
can be a tiling with a set of tiles with the property, that none of them is
an image of the tiled set, even if the tiled set has a nontrivial holonomy
group. A carefully crafted example revelas this fact. We need the following
generators:

x = (1 2 3 1 1 1) creates the image {1, 2, 3}.

{y = (4 4 4 5 4 6), z = (4 4 4 5 6 4)} give the image {4, 5, 6} and for the
generator set (a transposition and a cycle) for the holonomy compo-
nent S3 on the image.

u = (4 4 4 4 5 5) This and the nontrivial holonomy group generate the im-
ages with cardinality 2.

v = (4 4 4 1 2 3) This maps {4, 5, 6} to {1, 2, 3}.

w = (2 3 1 4 4 4) Just to make H{1,2,3} be nontrivial.

The decomposition is the following:

(2, 12 o (2, C2)× 3, C3) o (2, C2)× (3, C3) o (4, S3) o (2, 12)
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{6} {5} {2} {4}{3} {1}

{1,2}{2,3} {1,3}

{5,6} {4,5}{4,6}{1,2,3}

{4,5,6}{1,4}{2,4}{3,4}

{1,2,3,4}

{1,2,3,4,5,6} 5

4

3

2

1

0

Figure 5.4: A tiling picture of an automaton, which shows that it is possible
that a tiled set can have only nonimage tiles. For the description of the
generators see the text.

It is worth noting that the fourth level component has the symmetric group
on 3 points as its holonomy group, but has 4 tiles. The explanation is that
it acts as the identity on the fourth state.

5.7.4 Strict Subduction for Sets with the Same Cardinality

Contrary to what the example of full ts suggests, it is possible to have
strict subduction relation between sets with the same cardinalities. We need
only a transformation which has no inverse transformation in the semigroup
regarding that subset. Let’s consider a very simple example.

x = (1 2 1 2) maps {3, 4} to {1, 2} (and creates the image {1, 2}).

y = (3 3 3 4) maps {1, 2} only to {3} (but also creates the image {3, 4}).

The partial order set of the equivalence classes can be seen on Fig. 5.5.

5.7.5 Tile Chains

We hinted that the statelifts are basically tile chains starting from the cor-
responding singleton of the original state, though they are encoded into a
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{2}

{1}

yx

{4}

x

{3}

{1,2}

yx

{3,4}

x

{1,2,3,4}

y

Figure 5.5: The image relation partial order of the equivalence classes for
the ts generated by {x = (1 2 1 2), y = (3 3 3 4)}. The labels of the arrows
denote witnesses for the image relation.

{1,4}

{4}

{1,2,4}

{2,4}

{1,2,3,4}

{1,3,4} {2,3,4}

{3,4}

3

2

1

0

{3,4,5}

{4}

{1,2,3,4,5,6}

{1,2,3,4}

3

2

1

0

Figure 5.6: The tile chains starting from the singleton {4} and in the skeleton
of T4 (on the left) and Eilenberg’s Exercise 9.6. (on the right). In the case
of T4 the state 4 has 6 lifts (6 different paths can be chosen to reach the full
state set), in the other case there are only 2 state lifts.
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subduction chain in respect to the arbitrary chosen equivalence representa-
tives. Therefore, the number of statelifts equals to the number of tile chains
starting from the singleton set of the state. See Fig. 5.6

5.8 Summary

We described the holonomy method as a constructive proof, focusing on
details that are crucial for a computational implementation. We also made
efforts to improve the notation, though this might be difficult to judge ob-
jectively. It is important to notice that there is a slight change in the way
of thinking, departing from the mathematical viewpoint which is mainly
interested in what is proven, proceeding to the more practical view, which
says that the cascade composition is useful device and it is worth studying
in itself.



Chapter 6

Implementational Details of

the Holonomy

Decomposition

Though we have a detailed constructive proof of the holonomy decompo-
sition, it is still far from a working computational implementation. Con-
structive proofs usually provide a clear constructive description of the main
steps of the algorithm to obtain a decomposition but say nothing about how
the steps should be carried out and how the mathematical objects involved
should be represented computationally. Moreover, they never consider the
computational feasibility: the space and time complexity of the required
calculations. The main concern of an efficient implementation is to try to
avoid combinatorial explosions. Therefore the problematic points of the
algorithms are where the ∀,∃ symbols appear in proofs.

6.1 Related Software Packages

There are many different software tools for studying and manipulating finite
state automata. However, the number of algebraic automata theory compu-
tational packages is more limited, and none of them included tools for the
Krohn-Rhodes Theory.

The AMORE system is a software package for the computation of finite
automata, syntactic monoids of regular languages, and (possibly star-free)
regular expressions [MMP+95]. Among other functions, the program can
calculate the syntactic monoid of a finite state machine and its Green D-
class picture.

GAP is a powerful computer algebra system for group theory [gap02].
Recent versions are extended with semigroup theoretical functionality and
there is an extension package for finite state machines as well [DLM05].
This combination looks like emerging platform for dealing with automata,

46
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and probably be the system in which the algorithms described here will be
integrated.

6.2 Representational Issues

The algorithms below work with transformation semigroups, therefore it is
an important question how to represent a transformation and a ts, what
data structure should be used.

Transformations and Sets. Transformations are represented as map-
pings of the set n = {1, . . . , n} and the 0 value is used for partial trans-
formations (this possibility is for future extensions). No matter how an
automaton is given (what symbols are used) its state set is converted to the
set of the first n positive integers where n is the size of the state set, |A|.
This inner representation is still human-readable as well since it coincides
with the mathematical notation.

Transformations are stored as 1-dimensional arrays. The content of the
cell with index i is the image of i. This way the multiplication of transfor-
mations can be done in linear time depending on the number of elements
in A. As usually for getting fast set operations, subsets are represented as
bitvectors encoding characteristic functions.

Transformation Semigroups. The efficiency of the decomposition
algorithms depends largely on the way we handle semigroups. The possible
representations are:

Enumeration. Exhaustive enumeration of semigroup elements.

Cayley-table. The whole multiplication table for a semigroup S. It con-
tains |S| columns and rows, one for each element. The entries of the
table contains the products of the corresponding elements.

Finite presentations. Free semigroup on the input alphabet divided by
the congruence of the automaton.

Generators. Generating set consisting of transformations representing the
input letters.

Simple calculation shows that the first two methods are not viable op-
tions. An automaton may end up having a characteristic semigroup with nn

elements (namely the full ts) which is in the magnitude of billions already
for n = 10. A Cayley-table is even worse as in that case it contains n2n

entries. Therefore we cannot have all elements at hand at a time, only a
representative subset.

Finite presentations give an elegant way for defining semigroups but the
decomposition proofs are not written in terms of defining relations.
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The most suitable way is the last one. A generating set is a set of
semigroup elements called generators with the property that the elements
of the semigroup can be expressed as finite products of them. The generators
of the characteristic semigroup of an automaton are naturally given by the
transformations of the state set defined by the input symbols.

In the following algorithms it is a common question whether an element
belongs to a set or not e.g. transformations in a ts. For answering these
t ∈ S?-like questions in constant time we have to use hashtables [Knu98]
for storing sets instead of some linear data structures (1-dimensional arrays,
lists, etc.). Giving a good hashcode for a transformation is easy if it is
represented as a mapping of {1 . . . n}: the sum of the images of the individual
points multiplied by a fixed list of prime numbers respectively.

6.3 Trivial Implementation Using Brute Force Enu-

meration

Since we deal with finite structures in order to have a working implemen-
tation it is enough to fully calculate the required objects, i.e. enumerate all
elements of the sets ivolved in the decomposition. Clearly this is not really
clever to do, since combinatorial explosion does appear immediately. This
work can be considered as an effort to replace full enumerations with more
direct algorithms at the different stages of the decomposition, for the time
being with partial succes. The decomposition method described here
uses algorithms which are variations of the generalized breadth-first search
method. Similar algorithms are called orbit algorithms in computational
group theory [Ser03]. When we look for one particular element, or collect
elements with a specific property, we use the following general method: we
systematically generate elements and by using some heuristics we exclude
from further generation all those not having the desired property. Since
these variations of the algorithms are not restricted to calculating orbits,
we call them collector algorithms (Alg. 1). We start from a base set B and
by applying the generator operation GEN to this set we construct the set
of new elements, i.e. the result set R, if the terminate condition TERM is
not satisfied and there are elements to continue with, i.e. the base set is not
empty. If the newly generated elements are really new (r /∈ ∆) and have
the property Π then we collect those in a collection set C in case they are
not contained yet. If a new element is still a candidate (CAND(r) is true)
then we keep it for the next generation. Either way the element is put into
the set of processed elements ∆ just to keep track of what elements we have
checked already. After that the result set becomes the new base set and the
process is iterated.

The algorithm should collect all the elements with the desired property
from a finite set. For the correctness of the general collector algorithm we
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Algorithm 1: General Collector Algorithm. ADD(a,B) is a shorthand
for B ← B ∪ {a} and DEL(a,B) for B ← B \ {a}.

Data : base set B, generator operation GEN(B), terminate con-
dition TERM(), desired property Π(e), candidate condition
CAND(e)

Result: collection set C, Π(c) holds ∀c ∈ C
∆← ∅ ;
while (not TERM()) and (B 6= ∅) do

R← GEN(B);
foreach r ∈ R do

if r /∈ ∆ then
if Π(r) then ADD(r, C);
if not(CAND(r)) then DEL(r,R) ;
ADD(r,∆);

end
else DEL(r,R);

end
B ← R;

end

need the following requirements:

• an element, which does not satisfy the candidate condition can be
excluded from the generator set, therefore it cannot reappear in the
base set

• all elements with the desired property are accessible from the generator
set by the generator operation

Regarding the space complexity of the collector algorithm in general we
can only say that it is bounded by the cardinality of the set of all elements
that can be generated from the base set by the generator operator. The time
complexity has at least the same bound but it depends on how effective the
generator operator is , i.e. how many times it generates elements already
processed.

6.4 Examples

6.4.1 Generating Images

Generating the elements of I is a good example, where the base set is the
state set, the generator operation is the multiplication with the generator
transformation(s) of the ts. The required property is being an image (which
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we have in this case by default), the candidate condition is that the image
should be new (not in the collection yet), and the algorithm terminates when
the base set is empty.

Algorithm 2: Image Enumerator Algorithm. Here we do not need a
separate set for the processed elements since we need all of the images.

Data : base set B = {A}, GEN(A): action of a generator set G of S,
TERM():constant false, Π(P ),CAND (P): constant true, i.e.
just being a new element

Result: C: the set of images of S

while B 6= ∅ do
R← GEN(B);
foreach P ∈ R do

if P /∈ C then ADD(P, C);
else DEL(P,R);

end
B ← R;

end

6.4.2 Deciding Subduction Relation

A slightly different problem is deciding the subduction relation, whether
P ≤ Q, i.e. looking for a witness. The base set is G, the generator set
of the characteristic ts, the generator operation is simply multiplication by
generators, the candidate condition is CAND(R) = |P | ≤ |Q ·R|, the desired
property is Π(R) = |P | ⊆ |Q · R|, which is exactly the subduction relation.
The termination condition is TERM() = C 6= ∅, thus we stop whenever a
witness is found, so the relation holds, or when the base set is empty, thus
the relation does not hold.

6.4.3 Holonomy Components

One possible and natural way to obtain a holonomy group HQ is first col-
lecting those elements of S which permute Q (called its permutators) then
taking a homomorphic image of this collected set by collapsing transforma-
tions having the same effect on BQ (a permutator can permute elements
within a tile, or two permutators might be different regarding A \ Q but
doing the same with Q). But if we make the homomorphic mapping while
collecting then we may avoid elements that are collapsed in the homomorphic
image. We can stop collecting if the maximum of the sizes of noncollapsing
subsets of A in the base set’s transformations is smaller than |Q|. This re-
duces the search space substantially if |Q| is relatively big. The time and
space complexity is O(nn − (n− k)(n−k)) where k = |Q|, but this might be
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Algorithm 3: Subduction Relation Algorithm

Data : base set G, GEN(G: generating elements of S), TERM: C 6=
∅ i.e. a witness is found, Π(w): w is a witness, CAND(r):
|P | ≤ |Q ·R|

Result: C containing at least one witness

∆← ∅;
while (C = ∅ ) and (B 6= ∅) do

R← GEN(B);
foreach r ∈ R do

if r /∈ ∆ then
if P ⊆ Q · r then ADD(r, C);
if |P | > |Q · r| then DEL(r,R);
ADD(r,∆);

end
else DEL(r,R);

end
B ← R;

end

close to enumerating all elements for small k. In a special case we can also
stop collecting if the symmetric group is found (once some holonomy group
elements are found we can use them as a generator set and check the order
of the group).

6.5 Visualization

“We must see the matter at once, at one glance, and not by a process of
reasoning, at least to a certain degree.”

Blaise Pascal, Pensees I/1.

Our conceptual system is firmly grounded in our spatial sensory system.
Some research even say that our logical (and mathematical) thinking is
deeply rooted in spatial reasoning [LN00]. We would not like to continue
here the discussion about the nature of mathematics, but we would like
to emphasize the importance of good diagrams in mathematical research.
For instance, the whole tiling picture can be shown on a graph, where the
layout enables us to grasp the full structure, not just the pieces delivered by
formulas.

Our sowftware toolkit outputs the description of the graphs to be dis-
played and the actual layout is rendered by an external package. For this
purpose we use the widely known and used software package called GraphViz

[EGK+03].
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Algorithm 4: Holonomy Group Algorithm

Data : a subset of A: Q, base set G, GEN(G: generating elements
of S), TERM: C is the symmetric group on BQ, Π(w): w
permutes BQ, CAND(r): BiggestNonCollapsingSet(r) ≥ |Q|

Result: C = HQ, the holonomy group of Q

while (|C| 6= |BQ|!) and (B 6= ∅) do
R← GEN(B);
foreach r ∈ R do

if r /∈ P then
if BQ · r = BQ then ADD(r, C);
if BiggestNonCollapsingSet(r) < |Q| then DEL(r,R);
ADD(r, P);

end
else DEL(r,R);

end
B ← R;

end

6.6 Summary

Some decisioins about the low level details of a computational implementa-
tions for Krohn-Rhodes Theory (in particular and computational semigroup
theory in general) had to be made before proceeding to the more interesting
computational problems. The actual chosen representations come from the
programmers’ common sense. The problem here in semigroup theory can be
described very shortly: semigroups tend to have extremely many elements.

The collector algorithms based on the idea of a brute force search, but
they suffice for some specific problems like the image generation task and the
problem of deciding the subduction relation. They can be applied whenever
the generator operation is not redundant and the termination condition is
“quick”, in the sense that the probability of terminating in the beginning
of the search is quite high. One might ask for the exact time and space
complexity of these algorithms, but these exponential algorithms are likely
to be replaced by more efficient algorithms when our knowledge about these
decompositions advance.

But the brute force algorithm is not sufficient for the initial explo-
ration decompositions in the case of constructing the holonomy components.
Therefore the whole next chapter is devoted to this problem.
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Figure 6.1: Generating the image set for T4, the full transformation semi-
group on 4 points. The input symbols correspond to the following trans-
formations: a transposition x = (2 3 4 1), a collapser y = (1 1 3 4), and a
cyclic permutation z = (2 3 4 1). The arrows denote the actions of the input
symbols. Note that this is not the full image relation graph (but a subgraph
of it), and this shows how the Image Enumerator Algorithm works.



Chapter 7

Constructing Holonomy

Components

When constructing the holonomy components we need to find certain sub-
groups (or generators of subgroups) of the characteristic semigroup. This
also can be done by using the collector algorithms, but since transformation
semigroups can have so many elements we immediately bump into complex-
ity issues. Some tricks can be used (for instance recognizing the generator
set of the symmetric groups), but this problem demands a more systematic
solution. Here we propose two methods that provide improved solutions.
First we define the problem precisely, then show two different solutions.

7.1 The Problem

Let (A,S) be the corresponding ts of a given an automaton A = (A,X, δ),
and let Q be an arbitrary nonsingleton element of I, which is a subset of the
state set A. Then, we would like to construct the permutation group (Q,GQ)
induced by the elements of SI , where GQ is a maximal permutation group
on Q, i.e. no subgroup of SI contains GQ properly, when it is restricted to
Q. We call GQ the permutator group of Q. Moreover, it is also a question
to decide whether GQ is trivial or not.

The ultimate goal is to have HQ, the holonomy group of Q, which is a
subset of GQ, the set of transformations that permute BQ.

Obviously, the task of finding HQ can be accomplished in every case
due to the finiteness of the automaton. We only need the characteristic
semigroup for checking for its elements systematically whether they permute
Q or not. But this method is not satisfactory for two reasons:

Computational efficiency. The characteristic semigroup can be big even
for simple automata (in the worst case nn for Tn), therefore the enu-
meration of all elements is not a usable approach for a computational

54
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method. Different techniques (checking the size of images, stopping
when a symmetric group is found) can be applied in order to reduce
the search space to some extent.

Lack of a small generator set for H. Due to the advanced group theo-
retical algorithms [Ser03] it is enough to have a small set of generators
of a group instead of the explicit set of all group elements, but the
enumeration method gives the full permutation group.

In sum, the main fault of the enumeration method is that it is a “blind”
search rather than a direct way of constructing HQ. In the following we
describe a method using words on the alphabet of the generating input sym-
bols, which overcomes the shortcomings of the plain enumerative method.

7.1.1 Examples

The difference between HQ and GQ

Example 7.1 Let p1 = (2 3 1 5 6 4) and p2 = (4 5 6 1 2 3) be permutations
of the set Q = {1, 2, 3, 4, 5, 6}, and BQ = {{1, 2, 3}, {4, 5, 6}} a tiling of Q.

Clearly both p1 and p2 are nontrivial permutations of Q, but acting on BQ

p2 gives the identity permutation in HQ. Those permutations in GQ, which
move elements inside the tiles only, they fall into the identity of HQ by the
surjective homomorphism from GQ to HQ.

7.2 Word Based Construction Method

Intuitively permutations are connected to cycles in the state transition graph,
so in order to identify permutation subgroups of the characteristic we need
to check cycles of automata. This intuitive idea is more or less right, but
loosely speaking, not every cycle corresponds to a permutation group el-
ement. Therefore we have to clarify the notions of different cycles: the
graphical cycle, which looks like and may be a permutation, and the alge-
braic cycle which really is a permutation. The distinction is made by some
properties of the labelling word.

Based on these notions we give simple classification of automata and
show that the construction of the holonomy components can be done by
examining the cycle structure of certain derived automata.

7.2.1 Cycles in Automata

Definition 7.2 A graphical cycle in an automaton (A,X, δ) is a cycle in
its state transition digraph together with a word w ∈ X+, i.e. a sequence
of states a1, . . . , an n ≥ 2, where the states in the sequence are pairwise
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distinct except a1 = an, and w = x1 . . . xn−1, xi ∈ X such that ai · xi = ai+1

for all 1 ≤ i ≤ n − 1. The word w = x1 . . . xn−1 is called the label of the
cycle.

Since n ≥ 2 a loop edge is not a graphical cycle, and also, since ai 6= ai+1

within a graphical cycle, loop edges are not allowed.

Definition 7.3 An algebraic cycle in an automaton A = (A,X, δ) is a
permutation group ({a1, . . . , an}, 〈w〉) for which ai = aj ⇒ i = j, n > 1, and
w is a word in X+ such that ai ·w = ai+1 for all 1 ≤ i < n, and an ·w = a1.

The word w generates a cyclic group which acts faithfully on {a1, . . . , an}
by permutations. (Of course 〈w〉 might not act by permutations on A.)
Obviously wn is the identity element. Moreover, n being greater than 1
excludes trivial one-element groups. Note that loops are not generally al-
gebraic cycles. The generator of the algebraic cycle is w, and its label is
wn.

7.2.2 Graphically Cycle-Free Automata

Definition 7.4 An automaton is graphically cycle-free if it does not have
any graphical cycle.

The very simple structure of graphically cycle-free automata is reflected
in their subduction pictures in the following way:

Lemma 7.5 (A,S) is graphically cycle-free iff on every height level in each
subduction relation equivalence class there is only one element.

Proof: Let P,Q ∈ I and P ≡ Q but P 6= Q. Since P,Q are finite |P | = |Q|.
Clearly by finiteness there is at least one x ∈ Q such that x /∈ P ∩ Q,
otherwise P,Q would be the same. Due to the equivalence of P and Q we
have s, t ∈ S bijective mappings such that P = Q · s and Q = P · t and thus
(st)n is the identity on Q for some n > 0, by the finiteness of P,Q. Since
x · s = x′ 6= x while x · (st)n = x, there must be a graphical cycle.

Conversely, a graphical cycle ensures the existence of an equivalence class
with at least two elements at height zero. �

Another way to think about the proof of this lemma is to recognize that
for the singleton subsets of the state set (at height zero) the equivalence
classes are exactly the strongly connected components of the automaton’s
state transition graph.

This result can be exploited in the decomposition algorithm since if the
equivalence classes are detected to all be singleton classes, then there is no
need to look for holonomy groups at all and the holonomy identity-reset ts’s
can be built immediately.
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7.2.3 Algebraically Cycle-Free Automata

It is a well-known result of algebraic automata theory that the star-free
rational languages are recognized by exactly those automata whose charac-
teristic monoid is aperiodic (having no nontrivial subgroup) [Sch65]. It is
also known that deciding aperiodicity for a finite automaton is PSPACE-
complete [CH91]. We are interested in this problem for certain derived
automata that arise naturally in the holonomy decomposition.

Intuitively one might expect that the state transition graph of an ape-
riodic automaton contains no cycles at all, but this is not true in general:
there might be graphical cycles in it, while remaining aperiodic (see Fig 7.1).
But with another type of cycles the notion of aperiodicity can be expressed.

Definition 7.6 An automaton A = (A,X, δ) is algebraically cycle-free if it
does not have any algebraic cycle.

The property of algebraic cycle-freeness is tied up with the primitivity
of words, which act on some states as the identity.

Lemma 7.7 An automaton A = (A,X, δ) is algebraically cycle-free iff for
all states a ∈ A and for all words w ∈ X+ such that a · w = a , one of the
following statements holds.

1. w is primitive.

2. w is not primitive but has primitive root u ∈ X+, i.e. w = un, and
a · u = a.

Proof: If w is primitive, then we are done. Otherwise w = un where u
is primitive. Let’s suppose indirectly that a · u 6= a. Let k be the least
integer that a · uk = a (1 < k ≤ n). Then ({a, a · u, . . . , a · uk−1}, 〈u〉) is a
cyclic permutation group (with at least two elements), therefore we have an
algebraic cycle, contradicting our assumptions.

The converse is obvious due to the fact that a trivial permutation group
does not constitute an algebraic cycle, and the conditions 1 − 2 allow only
trivial permutation groups. �

Remark 7.8 Obviously Lemma 7.7 holds even if a · z 6= a for some left
factor z of w.

It is clear that in the absence of graphical cycles there cannot be any
algebraic cycle. Thus,

Proposition 7.9 If an automaton is graphically cycle-free then it is alge-
braically cycle-free.
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Figure 7.1: Automaton A has an algebraic cycle ({1, 2}, 〈a〉). Automaton B
has graphical cycles ab, ba, but they are labeled with primitive words.

Now we show that aperiodic automata are exactly the algebraically (not
the graphically) cycle-free ones.

Theorem 7.10 The following are equivalent for an automaton A = (A,X, δ)
with corresponding transformation semigroup (A,S):

1. A is algebraically cycle-free.

2. S is aperiodic.

3. Holonomy groups are trivial for (A,S).

Proof: (1) ⇒ (2): Suppose S is not aperiodic, then we have a cyclic group
〈v〉 in S of order n ≥ 2, where v ∈ X+ is a word representing the generator.
Thus vn is the identity of the cyclic group, v ≡ vn+1 and v 6≡ v2. Therefore
∃a such that a · v 6= a · v2 and a · v = a · vn+1. Let a′ = a · v, thus
a′ · vn = a′ and since A is algebraically cycle-free we can apply Lemma 7.7:
let u =

√
vn =

√
v, then we have a′ ·u = a′, a′ ·v = a′ and finally a ·v2 = a ·v,

which is a contradiction.

(2) ⇒ (1): For the converse we use again an indirect proof: Suppose
there is an algebraic cycle, i.e. ({a1, . . . , an}, 〈w〉) is a permutation group
with ai ∈ A,w ∈ X+ and n > 1. Therefore Zn, the cyclic group with n
elements, divides S. This cannot happen when S is aperiodic.

(2)⇔ (3): The components of the holonomy decomposition are all divi-
sors of the original semigroup, thus aperiodic semigroups have only trivial
holonomy groups, and wreath products and divisors of aperiodic transfor-
mation semigroups are aperiodic. �

Corollary 7.11 An automaton A = (A,X, δ) is aperiodic if and only if

∀a ∈ A, w ∈ X+, x · w = a⇒ a · √w = a.

The distinction between algebraically cycle-free aperiodic and nonape-
riodic automata is rather subtle. Two automata having the same state-
transition graphs regarding their connectivity might belong to different classes
depending on how the input symbols act on the state set (Fig. 7.1).
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Figure 7.2: An automaton A with state set A = {1, 2, 3, 4, 5, 6} and alphabet
{x, y}, where x and y are transformations with x = (3 4 1 3 4 3), y =
(4 3 6 6 4 2).

7.2.4 Non-Aperiodic Automata

A main concern of the holonomy decomposition is to find the nontrivial
holonomy groups. Fortunately the tiling picture provides tools for locating
the elements of I for which there exist nontrivial holonomy groups.

Lemma 7.12 For an element Q of I in the tiling picture of (A,S) if there
is a nontrivial holonomy group HQ, then in its set of tiles BQ there are at
least two distinct tiles t1, t2 such that t1 ≡ t2.

Proof: HQ being nontrivial means that there are some pair(s) of tiles for
which there are transformations permuting them and thus they are mutually
subduction related. �

The converse is not generally true as we can see in the example of an
automaton (Fig 7.2) with tiling picture (Fig 7.3). For a trivial HQ the set
of tiles BQ may contain distinct equivalent tiles, see Fig 7.4. In order to
determine whether we have a nontrivial holonomy group for a Q ∈ I we
define an extended automaton and examine its cycle structure. Denote the
equivalence classes of subduction relation by E1 to EN .

Lemma 7.13 If P ∈ Ei and for some s ∈ S, P · s = Q such that Q /∈ Ei

(leaving the equivalence class) then there is no transformation t ∈ S such
that Q · t ∈ Ei (no way back to the original equivalence class).

Proof: Suppose there is such a t that Q = P · s and P ′ = Q · t with
P ≡ P ′. Due to the equivalence we have P = P ′ · s′′ for some s′′ ∈ S,
therefore Q · (ts′′) = P ′ · s′′ = P , thus Q ≡ P , which contradicts the original
assumption that we leave the equivalence class of P . �
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Figure 7.3: The tiling picture of automaton A in Fig. 7.2. The equivalence
classes are denoted by boxes. Equivalence classes with elements having
nontrivial holonomy groups are shaded. Arrows ending in plugs denote the
’tile of’ relation.

Let’s define EQ as the union of equivalence classes which contain at least
one tile of Q ∈ I. Formally: EQ =

⋃
Ei∩BQ 6=∅

Ei. Then the tile automaton

of Q is defined as AQ = (EQ ∪ {ς}, X, γ), where ς is a sink state, the input
alphabet X is the same as the original automaton’s, and γ is the natural
extension of δ to act on subsets of A providing that if the image is not in
some Ei then it is ς. This way ς represents going to another equivalence class
not contained in EQ, but according to Lemma 7.13 this can be represented
as a sink since there is no way to come back.

The equivalence classes in EQ form strongly connected components in
AQ. When determining the nontriviality of HQ we look for algebraic cycles
in these components. We look not simply for independent algebraic cycles
in each component as a word of a cycle might not permute the tile elements
in another component, but for parallel algebraic cycles. This way we can
recast the characterization of a holonomy group element in terms of algebraic
cycles. More formally:

Proposition 7.14 HQ is nontrivial iff there exists a word w ∈ A+ and BQ

can be partitioned into {T1, . . . , Tk} subsets such that either

1. Ti consists of exactly one tile and Ti · w = Ti, or
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Figure 7.4: Two tile automata of automaton A in Fig. 7.2. A{1,3,4} is trivial,
while A{2,3,6} is nontrivial with generator word y.

2. Ti · 〈w〉 ⊆ BQ ∩ Ej for some 1 ≤ j ≤ N , and (Ti · 〈w〉, 〈w〉) is an
algebraic cycle in AQ

holds for all Ti, 1 ≤ i ≤ k, and (2) must hold for at least one Ti.

In short the proposition characterizes when the transformation induced by w
nontrivially permutes BQ. This transformation is clearly a nontrivial holon-
omy group element. From Lemma 7.13, Ti · wn ∈ (BQ ∩Ej) follows for any
n ≥ 0. Therefore the algebraic cycles contained in BQ generated by w are
all disjoint. If all intersections (BQ ∩ Ej) are singletons, or none of them
contains an algebraic cycle then HQ is trivial. This fact can be exploited
in efficient decomposition algorithms of the holonomy decomposition by ex-
cluding cases where the construction of the holonomy group should not be
attempted.

We describe an algorithm for constructing the maximal group permut-
ing an arbitrary given subset of a finite state automaton induced by the
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input symbols, and characterize its computational complexity. This prob-
lem naturally arises in the computational implementation of the holonomy
decomposition for the Krohn-Rhodes Theory.

7.2.5 The Algorithm

We described the problem on two different levels: finding permutators and
finding the holonomy group elements. In order to avoid the notational bur-
den we present the solution for the permutator problem. It is easy to trans-
late into the holonomy group problem (but not the opposite direction). Once
we know (Q,H) then (BQ,HQ) is obtained by making (BQ,H) be faithful,
as in Example 7.1.

This algorithm is yet another example of collector algorithms, so the
idea is simple again. We generate words and collect hose that induce per-
mutations on Q. But the details are a bit more complicated.

Generator Operation

We can just generate words starting from the empty word and applying
input symbols systematcially. But we know something about the form of
the possible candidate words. Since the words labeling transformations in
GQ should permute Q, the corresponding paths start from and end in Q.
So we define the following sets of input symbols:

Qout = {x ∈ X | ∃a ∈ Q, b ∈ A such that a · x = b}

Qin = {x ∈ X | ∃a ∈ Q, b ∈ A such that b · x = a}
Note that the names might be a bit misleading, since an incoming edge
might come from Q itself, and the outgoing might stay in Q. In the next
section it will become clear why we choose these names.

The generation of words has three stages:

1. Single letter words in Qin ∩Qout.

2. Two letter words in Qin ×Qout.

3. Words in the form xiwxo, where xi ∈ Qin, xo ∈ Qout, w ∈ X∗ gener-
ated systematically in alphabetical order.

This way we do not need to check words that clearly cannot permute Q.

Candidate Property

We know that the paths corresponding to the permutations of Q start and
end in Q. But how freely can they go around meanwhile? We can go “as
far” as we like until we can come back eventually, which – in terms of the
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state transition graph – means that we cannot leave the strongly connected
components. The orbit of one particular point a should stay within the
strongly connected components of a denoted by Ca. CQ =

⋃
a∈QCa, is

the union of strongly connected components of the states in Q. Finding
the strongly connected components of a digraph (here of a state transition
graph ) can be done in linear time by acyclic ordering (topological sorting)
of vertices using depth-first search [BJG02].

A word w represents a permutation of Q if Q ·w = Q. Once a word w is
found to be a permutation, we can stop extending it. This can be shown by
a simple argument: w is minimal in the sense that no proper left factor of it
is a permutation. Suppose wv is the next permutation in the continuation
of w (no proper left factor is a permutation, except w). Then, either w = v,
or v itself is a permutation. In the first case we clearly do not loose anything
by stooping at w. The same is true for the second case, since if v is different
then it is found independently as another branch of the search-tree.

A particular permutation (and transformations in general) can be ex-
pressed by many different words. We do not need to keep track of all those
words but one. Therefore we define an equivalence relation on words by:

w ≡Q v iff a · w = a · v ∀a ∈ CQ,

and it is enough to deal only with the equivalence classes X+/ ≡Q of words.
A class is represented by one of its elements, namely the first word found by
the breadth-first search. Obviously, we can safely ignore what permutations
do on A \ CQ.

In sum, for each newly generated word w we check whether the following
properties are valid:

• a word equivalent (realizing the same transformation when restricted
to CQ) to w is already processed,

• w is a permutation of Q (this is the desired property),

• a · w /∈ Ca for any a ∈ Q (leaves the strongly connected component),

• |Q · w| < |Q| (some states in Q are collapsed).

If any of these conditions is true, then we stop extending w. Otherwise,
if none of the above conditions are satisfied then we continue extending
w. Clearly, the generations terminates, since we collect the transformations
(not the possibly infinitely many word representations of them) and they
are finitely many.

7.2.6 Examples

Qin and Qout

Consider Figure 7.4 again. B{1,3,4} is {{1, 3}, {1, 4}, {3, 4}}. {1, 3, 4}in =
{x}, {1, 3, 4}out = {x, y}. In the first case we have some search space reduc-
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tion, while in the case of outgoing edges we gain nothing as the set of input
symbols is exactly {x, y}.

B{2,3,6} is {{2, 3}, {2, 6}, {3, 6}}. {2, 3, 6}in = {y}, {2, 3, 6}out = {x, y}.
In the first case again there is some search space reduction. And the very first
step in the generation of words finds a generator: {2, 3, 6}in ∩ {2, 3, 6}out =
{y}.

The Good and the Bad

Again, we would like to use the full transformation semigroup for testing our
method. The main concern now is the number of generators provided by
the algorithm. Recall that in the decomposition of the full ts we have sym-
metric groups (plus constant maps) on all levels. Therefore the components
can be generated only by two permutations, a cycle and a transposition.
Decomposing T6 gives the following number of generators:

Level #Generators Order of holonomy group

1 2 2

2 6 6

3 24 24

4 40 120

5 2 720

Boldface numbers indicate cases where the generator set equals the gener-
ated group. On the top level it is the minimal number of generating elements
and this efficiency is due to the fact it is ‘easy to fall down from the peak’, i.e.
there are not many elements in the equivalence class to wander around. But
when the tiling picture gets wider the algorithm becomes very inefficient: it
enumerates all elements of the generated group.

Curious readers might want to check the output of the algorithm on the
fourth level. It is a challenging exercise to track down the generator words
(listed on Fig. 7.6) on Fig. 7.5.

7.3 Dependency Function Based

The real machinery of the cascaded automaton hides in the dependency
functions. We tried to emphasize this insight before and now we present
something more convincing: a method for constructing holonomy compo-
nents by using the values (component actions) of the dependency functions.
We use the algorithm for lifting the transformations for finding the holonomy
group generators.

The idea is simple and comes from the following origins:
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y,z

{1,3,5,6}

x

y

z

x

y,z

z

y

x

y,z

x

x

z

y

x

z

y

y,z

x

Figure 7.5: The tile automaton of of the fourth level’s component of the
holonomy decomposition of T6. The generators are: x = (2 3 4 5 6 1),
y = (1 1 3 4 5 6), z = (2 1 3 4 5 6).
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Word in GQ in HQ

z (2 1 3 4 5 6) (4 2 3 1 5)
xyxxxx (5 1 2 3 4 5) (4 5 1 2 3)
xxxxxx (1 2 3 4 5 6) (1 2 3 4 5)
xzxxzxx (5 1 2 4 3 6) (4 3 1 2 5)
xzxxxzx (5 1 3 2 4 6) (4 5 3 2 1)
xxxzxxx (1 2 3 5 4 6) (1 5 3 4 2)
xxxxzxx (1 2 4 3 5 6) (1 2 5 4 3)
xyxzxxx (4 1 2 3 5 4) (4 2 1 5 3)
xxxxxzx (1 3 2 4 5 6) (3 2 1 4 5)
xyxzxxzx (4 1 3 2 5 4) (4 2 3 5 1)
xyxzxzxx (3 1 2 4 5 3) (4 2 1 3 5)
xxxzxxzx (1 3 2 5 4 6) (3 5 1 4 2)
xxxxzxzx (1 3 4 2 5 6) (3 2 5 4 1)
xxzxxxxx (2 3 4 5 1 6) (3 4 5 1 2)
xzxxzxzx (5 1 3 4 2 6) (4 1 3 2 5)
xxxzxzxx (1 2 4 5 3 6) (1 3 5 4 2)
xxxzxzxzx (1 3 4 5 2 6) (3 1 5 4 2)
xxzxxxxzx (3 2 4 5 1 6) (1 4 5 3 2)
xxzxxzxxx (2 3 5 4 1 6) (3 4 2 1 5)
xxzxxxzxx (2 4 3 5 1 6) (5 4 3 1 2)
xxzxxzxzxx (2 4 5 3 1 6) (5 4 2 1 3)
xxzxxzxxzx (3 2 5 4 1 6) (1 4 2 3 5)
xxzxxxzxzx (3 4 2 5 1 6) (5 4 1 3 2)
xxzxzxxxxx (3 4 5 1 2 6) (5 1 2 3 4)
xxzxzxxzxxx (3 5 4 1 2 6) (2 1 5 3 4)
xxzxxzxzxzx (3 4 5 2 1 6) (5 4 2 3 1)
xxzxzxxxzxx (4 3 5 1 2 6) (3 1 2 5 4)
xxzxzxxxxzx (2 4 5 1 3 6) (5 3 2 1 4)
xxzxzxzxxxxx (4 5 1 2 3 6) (2 3 4 5 1)
xxzxzxxzxzxx (4 5 3 1 2 6) (2 1 3 5 4)
xxzxzxxxzxzx (4 2 5 1 3 6) (1 3 2 5 4)
xxzxzxxzxxzx (2 5 4 1 3 6) (2 3 5 1 4)
xxzxzxzxxxxzx (4 5 1 3 2 6) (2 1 4 5 3)
xxzxzxzxxxzxx (3 5 1 2 4 6) (2 5 4 3 1)
xxzxzxzxxzxxx (5 4 1 2 3 6) (5 3 4 2 1)
xxzxzxxzxzxzx (4 5 2 1 3 6) (2 3 1 5 4)
xxzxzxzxxzxxzx (5 4 1 3 2 6) (5 1 4 2 3)
xxzxzxzxxzxzxx (5 3 1 2 4 6) (3 5 4 2 1)
xxzxzxzxxxzxzx (2 5 1 3 4 6) (2 5 4 1 3)
xxzxzxzxxzxzxzx (5 2 1 3 4 6) (1 5 4 2 3)

Figure 7.6: The generator words for S5 in the decomposition of T6 produced
by the word based construction method.
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Lifting generators only. For lifting the transformation semigroup to the
wreath product semigroup it is enough to map the generators only (see
division in Section 2.1.5). This implies that the dependency functions
of the generators contain all information about the generators of the
holonomy components, thus they encode the whole wreath product ts.

Holonomy permutations are moves within equivalence classes. With
the help of ←−mP and −→mP we can move between an arbitrary element
and the representative of a subduction equivalence class. By con-
catenating these maps we can move from any element to any other
element within the equivalence class. Thus having certain set of these
maps might draw the generator set for holonomy components, since
a holonomy permutation is built up from synchronized movements in
some equivalence classes, as showed in Section 7.2.4.

’Cheating’ gives component actions. For lifting the original ts in the
mathematical proof of the Holonomy Decomposition Theorem (Section
5.6.1) we do some kind of cheating: we do not give the lift in its full
detail (in a small set of formulas or as a lookup table serving the needs
of a practical minded computer scientist), we just describe a method
for mimicking the lifted transformation in a particular situation (i.e. a
given cascaded state), for giving the component actions by combining
←−mP and −→mP maps. By knowing the original transformation we tell
for a particular cascaded state what the transformation lift would do
in a particular situation, which are exactly the component actions.

7.3.1 The Algorithm

Since we cannot give a nice formula for the dependency functions, we han-
dle these functions as lookup tables. The tables map upper fragments
(Bi, . . . , Bh), 1 ≤ i < h of cascaded states, the elements in B1 × · · · × Bh to
holonomy actions (constants and permutations). To make these functions
fully defined for those upper fragments not appearing in the lookup table
we define their values to be the identity map. The steps for getting the
holonomy generators are the following:

1. Generating Λ(A), i.e. enumerating all tile chains. Clearly, in terms of
efficiency this is the weakest part of the algorithm, since there can be
many tile chains. For the time being we do not know what subset of
the tile chains is needed for defining the dependencies.

2. Applying each generator lift to Λ(A) by using the method for lifting
the transformations described in Section 5.6.1. Whenever we get a
nontrivial holonomy group action we record the arguments of the de-
pendency function and its value. A nontrivial action is a constant map
or a permutation which does not act as an identity on the tiles.
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{2} {4}{3}{1}

{1,2} {2,3} {3,4}

{1,2,3} {2,3,4}

{1,2,3,4} 3

2

1

0

Figure 7.7: Tiling picture of the elevator automaton with 4 states.

3. For each recorded permutation we have to decide exactly which com-
ponent it belongs to, if there are parallel components on a level. This
is done by the the successive approximation (see Section 5.5.1) of the
upper fragments. The equivalence class of the resulting set indicates
the right component.

After drawing the lookup table, the sets of permutations for each com-
ponent will be the corresponding generator sets. If there is no entry or there
are only constant map entries, then that component’s holonomy group is
trivial.

7.3.2 Example

An Aperiodic Example: the Elevator Again

Recall Example 4.2. Now we are interested in the dependency functions of
the lifts of the generator transformations. To keep it simple we consider the
elevator with 3 levels. The generators are d = (1 1 2 3) and u = (2 3 4 4).
The skeleton can be seen on Fig. 7.7. The algorithm gives the following
lookup tables (using the notation of lookup tables in Example 2.2):
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{1,2,3,4}

{1,2,3}

{2,3}

{3}

{3,4}

{4}

3

2

1

0

{1,2,3,4}

{1,2,3}

{1,2}

{2}

{2,3}

{4}

3

2

1

0

Figure 7.8: State lifts of states 3 (left) and 2 (right) in the holonomy decom-
position of the elevator automaton with 4 levels. The bidirectional arrows
denote the coding and encoding of tile chains.

û:

fu
3 () = constant{2, 3, 4}

fu
2 ({2, 3, 4}) = constant{3, 4}

fu
1 ({3, 4}, {2, 3, 4}) = constant{4}

d̂:

fd
3 () = constant{1, 2, 3}

fd
2 ({1, 2, 3}) = constant{2, 3}

fd
1 ({2, 3}, {1, 2, 3}) = constant{3}

Note that the indices of the functions correspond to height numbers, fi gives
an action on the ith level.

It is somewhat surprising that there are only few entries in the lookup
table: only 3 entries per transformations, while there are 8 (23 tile chains)
states in the cascaded product. But still, the mappings within the equiv-
alence classes and the successive approximation do the job. Let’s consider
the following cascaded state: â = ({4}, {3, 4}, {1, 2, 3}), which is a lift of
3. Let’s apply d̂ to this cascaded state. We know that it should produce a
state lift for 2, otherwise the division would not hold. For the the top level
(third) we have a constant map defined, so we get {1, 2, 3}. On the next
(second) level d̂ is defined for the fragment ( , ,{1,2,3}), so we apply the
constant map yielding {2, 3}. On the bottom level (first) we have no en-
try in the dependency function lookup table, therefore we leave the existing
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component there. We got â · d̂ = ({4}, {2, 3}, {1, 2, 3}), and that is a lift for
2, as expected (check Fig. 7.8).

Dependency Functions for a Nontrivial Holonomy Group

Recall Eilenberg’s example again (Fig. 5.3). We have a nontrivial group for
the tiles B{3,4,5}. Actually it is S3. Here are the corresponding dependency
function entries:

x̂:

fx
1 ({1, 2, 3}, {1, 2, 3, 4}) = (3 4 5 3 4 4)

ŷ:

fy
1 ({1, 2, 3}, {1, 2, 3, 4}) = (3 5 4 3 5 3)

The tiles are singleton sets {3}, {4} and {5}, therefore it is easy to check that
one function value is a cyclic permutation, the other one is a transposition.
Together they form a minimal generator set for the symmetric group.

In general, the minimality of the generator set is not guaranteed, since
we may have to different generators for the original semigroup which act the
same way on a subset of the state set.

Narrowing the Skeleton

Observing that since we have a bijection between tile chains and cascaded
states and we know the mapping between them (see Section 5.4.2) leads
to the idea that we do not need the full skeleton in order to construct the
holonomy components. We need only the tilings of the representatives, and
tile chains can be recovered from them, if needed. How much percent is this
part compared to the size of the full skeleton? Here is a table about the
ratio in the case of full transformation semigroups (also see Fig. 7.9).

Semigroup Ratio

S2 100%

S3 85%

S4 80%

S5 58%

S6 39%

This seems to be a very good news, since as I gets bigger the ratio of the
needed subsets versus the size of I decreases. The bad news is that we
cannot exploit this property unless we solve the problem of generating tiles
locally (see the problem of nonimage tiles in Section 5.7.3).
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{5}{2}{3}{4}{1}

{1,2}{2,3}{2,5}{1,4}{3,5}{1,3}{4,5}{1,5}{2,4}{3,4}

{2,3,5}{1,2,5}{1,4,5}{1,2,3}{1,3,5}{1,2,4}{2,3,4}{2,4,5}{3,4,5}{1,3,4}

{1,2,3,5}{2,3,4,5}{1,2,4,5}{1,2,3,4}{1,3,4,5}

{1,2,3,4,5} 4

3

2

1

0

Figure 7.9: The partial tiling picture of T5. Only the equivalence class
representatives and their tiles are displayed. These are needed for carrying
out transformations in the wreath product semigroup. The other elements
of I can be generated by mapping cascaded states to tile chains.

7.4 Summary

Constructing the holonomy component is a critical issue in implementing
the holonomy decomposition. Here we described two different methods.
The first one is a more advanced search than the brute-force approach. It
uses the knowledge about the structure of tiling and its relations to the
equivalence classes. Exploring these connections improved our understand-
ing of holonomy decomposition. However, regarding its efficiency in terms
of a small generator set, it is still not satisfying. Therefore we presented
another approach in a completely different manner. Leveraging the depen-
dency functions we get a generator set comparable in size to the original
automaton’s generator set.
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Applications

“The engine turns, the Maker rests.”
Imre Madách, The Tragedy of Man, 1860.

The hierarchical decomposition of automata gives us wonderful promises
regarding its applicability: automated object-oriented programming in soft-
ware development [Neh94], formal methods for understanding in artificial
intelligence [Neh96a]. The least number of needed levels for decomposition
provides a widely applicable integer-valued complexity measure, including
applications ranging from electrical engineering and physics to evolutionary
biology [Rho71, NR00, Neh96a, Arb68], just to briefly mention some im-
portant keywords. We also have now working implementations, therefore it
is reasonable to ask what happens to the promises. Why are the foretold
revolutionary results not delivered yet? There are three basic reasons:

1. Since this work gave the first computational implementation, simply
due to the lack of tools before no one has tried to do practical appli-
cations before.

2. Our knowledge of the detailed inner workings of actual decompositions
is still rudimentary.

3. The implementations are not yet scalable.

Our assumption is that the second reason is due to the first one. Therefore
we think that by studying small but nontrivial examples, understanding
otherwise well-known structures differently, via hierarchical decomposition,
eventually will lead us to scalable implementations by exploiting the special
properties of the decompositions.

Here we take this route, first we will show some features of the holonomy
decomposition emphasizing the role of the subduction equivalence classes
using spatial clues. Then we decompose finite residue class rings modulo n
represented as semigroups. And finally we discuss the difficulties of applying
hierarchical decompositions as formal models of understanding.

72
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8.1 Understanding the Holonomy Decomposition

The holonomy decomposition gives us a hierarchically structured finite au-
tomaton, but it is not immediate how this cascaded automaton works, and
how it is related to the original automaton although a division is constructed
in the proof of Theorem 5.1. Therefore it is worth examining illustrative ex-
amples in order to understand how in detail the holonomy decomposition
provides hierarchical coordinate systems on finite automata. Since we are
human beings living in a three-dimensional physical world, it is easier for
us to comprehend abstract constructs in spatial terms. Here we will first
consider state transition diagrams with some specific forms. The nodes rep-
resent points in space and the edges represent the connections in that space,
thus input symbols correspond to movements in the space.

8.1.1 Decompositions Without any Hierarchical Dependence

The most basic examples are with only one hierarchical level. These are
the automata whose characteristic semigroups are groups (possibly with
constants). As all input symbols are permutations or resets I consists of
the full state set and the singletons.

Torus. The torus is basically a m × n grid of points with a wrap-around
(Fig. 8.1.1). Since we can get back to the a state by going into one direction,
we have loops, thus we have nontrivial groups. Wherever we are, we can
reach any other point, thus there is no irreversibility of the operations and
this yields the very simple holonomy decomposition: the only component of
the decomposition is (mn, Cm × Cn).

◦ r //

d
��

◦ r //

d
��

◦
r

xx

d
��◦ r //

d

GG

◦ r //

d

GG

◦
r

ff

d

GG

Figure 8.1: A 2×3 toroidal grid as a state transition graph of an automaton.
States are denoted by the circle nodes (without names, but can be addressed
by coordinates). The input symbols are d and r, corresponding to moves on
the grid: down and right.

8.1.2 The Role of Subduction Equivalence Classes

The role of equivalence subduction classes is that we do not have to consider
explicitly those elements of I which behave the same way under the action of
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S, i.e. their holonomy groups are isomorphic and there are transformations
in S to establish this isomorphism.

Irreversible Mesh. Let’s consider automata with transition graphs of
shape of a bounded rectangular plane, and with two input symbols going
left and down. Clearly, these automata are aperiodic, since applying any of
the input symbols collapses states towards the left or bottom edges. More-
over, each element of I forms a subduction equivalence class on its own. The

◦ r //

d

��

◦ r //

d

��

◦ ree

d

��◦ r //

d

ZZ ◦ r //

d

ZZ ◦ d,ree

◦ ◦ ◦

◦ ◦ ◦

Figure 8.2: A 2 × 3 irreversible mesh automaton. On the left are 3 exam-
ple elements of the set of the images. The images are rectangles with the
common bottom right corner. Each of them form a singleton equivalence
class on its own, due to the fact that we cannot move backwards in either
direction.

example on Fig 8.2 shows a 2× 3 mesh with input symbols r, d for moving
right and down on the grid. The bottom-right corner is the state where even-
tually the movement ends up, therefore this state is contained in all elements
of I (except the other singletons), which are basically the rectangles with the
common bottom-right corner. Its decomposition is (12 × 12) o (12 × 13) o 13,
|I| = 11.

Partially Reversible Mesh. The situation changes when we have the
other directions as well (going up and right) as cycles appear. Despite the
cycles in the graph it is still aperiodic (for a further discussion determining
aperiodicity in automata see Section 7.2.3). But the equivalence classes
are not singletons any more. They consist of all rectangles of the same
dimensions.

The example of 2 × 3 mesh on Fig. 8.3 shows the automaton and one
particular equivalence class. Its decomposition is (12 × 12) o (12 × 14) o 14,
|I| = 18. Although there are more elements in I than in the previous
irreversible case, the decomposition is quite similar, since the equivalence
classes are not singletons.
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Figure 8.3: A 2 × 3 partially reversible automaton with all its equivalence
classes. An equivalence class has elements that are rectangles with the same
dimension.
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1
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7b

b,c

4
a

3a

b,c

5

b,c

6

a
b,c

a
ba,c

c

a

b

Figure 8.4: Counterexample automaton with 7 states yielding
long holonomy decomposition (20 levels). The generators are:
{(2 4 1 6 6 7 7), (7 2 3 4 5 6 5), (1 2 3 3 5 6 7)}. Its decomposi-
tion is (2, S2) o (2, 12) o ((2, 12)× (3, 13)) o (3, 13) o ((3, 13)× (3, 13)) o
((3, 13)× (3, 13)× (3, 13)) o ((3, 13)× (4, 14)) o ((2, 12)× (3, 13)× (4, 14)) o
(2, 12) o (2, 12) o (4, 14) o (4, 14) o ((3, 13)× (4, 14)) o ((3, 13)× (3, 13)× (4, 14)) o
((2, 12)× (3, 13)× (4, 14)) o ((3, C3)× (4, 14)) o ((3, 13)× (3, 13)) o (3, 13) o
(2, 12) o (3, 13).

8.2 Properties of the Holonomy Decomposition

8.2.1 Number of Hierarchical Levels

For finite semigroups the number of hierarchical levels is clearly bounded,
but it is an important question how does it depend on the number of states
of the original automaton. What is the maximal number of hierarchical levels
of the holonomy decomposition of an automaton with n states? The answer
gives the number of coordinates which is the size of the generated formal
model.

We have seen already that using the V ∪T method gives us extremely long
decompositions, but the holonomy method seems to be a better candidate.
By the holonomy method we mean the constructive proof described in this
work in Chapter 5, since Zeiger’s original method [Zei67] differs in length
(generally gives longer decompositions), as the parallel components appear
on different levels in his proof.

The first guess would be probably at most n−1, according to the intuition
that height numbers correspond to cardinalities. This turns out to be false,
due the fact that strict subduction is possible between sets with the same
cardinalities (see Section 5.7.4).

Since the theoretical approach seems difficult, we can get some help
from the computational tool: by using a method resembling genetic algo-
rithms [Hol75] we could find counterexamples. We started from a randomly
generated automaton, explored the one point mutation neighbors of this au-
tomaton by randomly changing the image of a single element in a generator
transformation (i.e. the target of a single arrow in the state-transition dia-
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gram), then selected for the longest decomposition and repeated the same
cycle. We found experimentally the following state set size and height num-
ber pairs: (5, 11), (6, 15), (7, 20) – see Fig. 8.4, and (8, 26). Hence even
3n+1 does not bound h(A). Note that the holonomy decomposition is still
more efficient than the V ∪T technique in terms of the length of the wreath
product (see [ENN04] or Chapter 4).

We do not know an exact bound for the length of the holonomy decompo-
sitions yet, but we can summarize the observations of our genetic algorithm
experiments.

Observation 8.1 Long holonomy decompositions tend to have a low num-
ber of nontrivial holonomy group components with small cardinality.

It seems that in order to build a high skeleton, we need sufficiently many
elements in I, and that is provided by the nontrivial group components’
permutations. But on the other hand, if we have a group component with
high order, then its subgroups might also be components on lower levels,
thus collapsing the hierarchy.

8.2.2 Size of a Component’s State Set

Another important question is How many a tiles can a set Q in I have given
its cardinality? The answer gives the number of states of a component,
contributing to the size of the state set of the cascaded product. Intuition
might say that if we have more tiles, then they should become inclusion
related, thus not satisfying the definition of being a tile, so that a subset
Q ∈ I should not have more tiles than its cardinality as for the full ts.

However, mistyping one character the generators of R6 (the semigroup
of integers modulo 6, see Section 8.3) yielded an automated decomposition,
where the top level set with cardinality 6 has 14 tiles (see Fig. 8.5). This
example also shows the ruggedness of the landscape of the decompositions,
since just changing one single image of a transformation results in a com-
pletely different hierarchical structure and sets of tiles.

The analysis of the example in Fig. 8.5 shows that the high number of
tiles for the top level component is due to the missing sets with cardinalities
between the top and next level below. This suggests set theoretical consid-
erations: What is the largest number of tiles that are not subsets of each
other? Considerations based on examples led to the following conjecture:

Conjecture 8.2 ∀Q ∈ I, |BQ| ≤
(

n
bn

2
c

)
where n = |Q|.

Actually we can show that it is indeed possible that |BQ| =
(

n
bn

2
c

)
. We

need the generators of the symmetric group Sn:

(2 3 . . . n− 1 1), (2 1 3 . . . n)
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{6} {5} {2}{3} {4} {1}

{3,5} {2,6}{1,3} {1,5} {2,4}{4,6}

{1,2}{5,6} {2,3} {2,5}{3,6} {1,4} {4,5}{3,4}{1,6}{1,3,5} {2,4,6}

{2,3,5}{1,4,6} {1,2,5}{1,4,5}{2,3,6}{3,5,6} {2,5,6} {1,2,4}{1,3,6} {3,4,6} {2,4,5}{1,3,4}

{1,2,3,4,5,6} 4

3

2

1

0

Figure 8.5: The tiling picture of a counterexample automaton
with many tiles at the top level in decomposition. Generators:
{(2 3 4 5 6 1), (1 3 5 1 3 5), (1 4 1 4 3 4), (1 6 5 4 3 2)}. Its decompo-
sition is (2, S2) o ((2, S2)× (3, S3)) o (2, S2) o (14, D12). The description of
this ts differs from R6 only in the image of a single element under a single
generator (italicized).

and an arbitrary transformation t which collapses d n
2 e states, thus its rank

is bn2 c. For instance a transformation t given by:

t(i) =

{
1 t ≤ dn2 e
i otherwise

In the ts on n generated by these three transformations the tiles of n are all
subsets with bn

2 c elements.
The fact that subduction as a partial order contains the inclusion relation

suggests that reasoning about the inclusion partial order of I gives us an
upper bound.

Proposition 8.3 Let BQ be the set of tiles Q in a holonomy decomposition
and |Q| = n, then |BQ| ≤

(
n
bn

2
c

)
.

Proof: Since (2Q,⊆) has a maximal antichain consisting of all subsets with
bn2 c elements, Dilworth’s Theorem (see Appendix B) implies that the num-
ber of chains needed to cover (2Q,⊆) equals to

(
n
bn

2
c

)
. Since I does not

necessarily equals 2Q (it is a subset of it), we need the same number of or
less chains to cover (I ↓Q,⊆), the elements of I below Q in the inclusion
relation, i.e. the subsets of Q. The number of chains covering (I ↓Q,⊆) is
at least the number of the maximal subsets of Q, which are the tiles of Q
by definition. �

Since we know that this maximal number of states for a component is achiev-
able, we have a sharp bound.



79

8.3 Decomposition of the Rings of Integers Mod-

ulo n

The transformation semigroup of finite residue class ring of integer modulo
n is a set n with the operations of addition and multiplication modulo n,
and is denoted by Rn.

8.3.1 Representation

Integer modulo n residue class rings Rn can be represented by automata.
The state set is n, the residue classes modulo n. The transformations corre-
spond to the operations of the ring represented as one-argument functions
such as +1,×2,×3 and so on. As generators, clearly we need only at most
+1 and the multiplications by the prime elements smaller than n. The
characteristic semigroup of this automaton is denoted by S(Rn).

Proposition 8.4 |S(Rn)| = n2.

Proof: S(Rn) is a noncommutative semigroup, a semidirect product of the
additive group Cn and the multiplicative monoid in Rn, since the elements
are given by the affine linear transformations of the form ×k + l which are
closed under composition. It is easy see that all distinct pairs k, l ∈ n give
distinct transformations of n, therefore we have n2 transformations. �

For example, the following automaton represents the R4, the residue
class ring of integers modulo 4:

?>=<89:;0
+1 //×2,×3

(( ?>=<89:;1

+1,×2

��

×3

wwnnnnnnnnnnnnnnnnn

?>=<89:;3

+1

OO

×3
((

×2

66 ?>=<89:;2
+1

oo ×2

ggPPPPPPPPPPPPPPPPP
×3hh

Since it is easy to move between the ring and semigroup notation, we
will use the notation αm+β instead of (m ·×α) ·+β, where m ∈ n and α, β
are elements of the ring Rn.

8.3.2 The Extended Set of Images

The extended image set I consists of the sets given in the form αn+β. The
additive factor always induces a permutation on I and the multiplicative
factor will also induce a permutation if and only if (α, n) are relative primes.
If α shares a divisor with n then collapsing of states occurs. Therefore the
set I of proper images of S(Rn) consists of the subsets αn + β of n, where
gcd(α, n) 6= 1 and 0 ≤ β < α. To make these intuitive statements more
exact, we have the following facts:



80 Chapter 8. Applications

Fact 8.5 Suppose α | n, α ∈ n, then multiplication by a prime p collapses
some elements of αn if pα | n, but permutes the elements of αn if pα - n.

Proof: If pα | n, then |αn| = n
α

and |pαn| = n
pα

, thus 〈pα〉 ( 〈α〉, where 〈α〉
is the principal ideal generated by α. Due to the strict inclusion we have
collapsing by p.

pα - n case: Let kα, lα ∈ 〈α〉 and assume that 0 ≤, kα, lα < n. Now
suppose this is true pkα = plα. Then pα(k − l) = qn, and p | q since α | n
and pα - n. So writing q = q′p, we have pkα− plα = pq′n and dividing by p
we get kα− lα = q′n, thus kα ≡ lα mod n. According to the assumptions
kα and lα are smaller than n, therefore kα = lα, thus ×p permutes αn. �

Next, we show that other integers that are not divisors of n do not
produce new images.

Fact 8.6 For any integer β, βn ≡ αn for some α | n. In fact α = gcd(β, n).

Proof: Let β = αk, k = p1 · · · pm (with repetitions possible; and the case
k = 0 is obvious). If we choose α as the greatest common divisor of β and n,
then piα - n. Applying Fact 8.5 to each pi m times yields that k permutes
αn, thus αn = kαn = βn. �

8.3.3 Subduction, Equivalence Relation, and the Tiling Pic-

ture

Here we show how the subduction and the equivalence relations are con-
nected to the operations in Rn. The equivalence classes are determined by
the multiplicative factor and the elements of a class are determined by the
additive factor. Moreover, the partial order of the equivalence classes is the
same as the inclusion relation of the principal ideals. Here we use the fact
that 〈α〉 = αn, where 〈α〉 is the principal ideal of the ring generated by α.
The equivalence relation is easier to grasp since it is related to the additive
operations.

Lemma 8.7 αn ≡ αn + β.

Proof: To αn we can apply the transformation +β, and to αn + β we can
apply the transformation −β, thus establishing the equivalence. �

Now we can proceed to understand how the multiplicative operations are
connected to the subduction relation.

Lemma 8.8 Let P = α0n + β0, Q = α1n + β1 be elements of I, then
P ≤ Q⇐⇒ α1 | α0 (mod n).
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Proof: According to the definition of subduction relation P ≤ Q if P ⊆ Q · s
for some s ∈ S(Rn), i.e. P ⊆ αQ + β. Thus we have α0n + β0 ⊆ α(α1n +
β1) + β, or equivalently α0n ⊆ αα1n + β2. We know that 0 and α0 are in
α0n, since 0, 1 ∈ n.

0 = αα1i+ β2 mod n

α0 = αα1j + β2 mod n

for some i, j ∈ n. Subtracting the first equation from the second we get
α0 = αα1(j − i) + kn for some k. Therefore α1 | α0 modn.

If α1 | α0 then α0 = αα1 + kn for some k, thus α0n = (αα1 + kn)n =
αα1n. Then P = α0n+β0 = αα1n+β0 = α(α1n+β1)+(β0−αβ1) = αQ+β′.
�

Note that in the second part of the proof we have equality, not just inclusion.

We still have to show that there are no elements equivalent to αn except
those of the form αn + β, i.e. the equivalence classes correspond exactly to
the principal ideals of the ring.

Lemma 8.9 Let Q = αn + β, Q′ = α′n + β′ and Q′ ≡ Q, then αn = α′n.

By Lemma 8.7 we have α′ | α and α′ | α (mod n), thus α = ζα′ ∈ 〈α′〉
and α′ = χα ∈ 〈α〉 for some ζ, χ ∈ Rn, therefore 〈α′〉 ⊆ 〈α〉 and 〈α〉 ⊆ 〈α′〉
yielding 〈α〉 = 〈α′〉. Using this result we get Q′ = α′n + β′ = 〈α′〉 + β′ =
〈α〉+ β′ = αn + β′ ≡ Q. �

We can summarize the previous results in the following theorem about
the tiling picture of S(Rn). As the choice of the representative is arbitrary,
we may take it to have zero as the additive factor, thus to have the canonical
form αn.

Theorem 8.10 Let n = pν1

1 · · · pνm
m , and P,Q be elements of I with repre-

sentatives P = αn and Q = βn, where α = pα1

1 · · · pαm
m and β = pβ1

1 · · · pβm
m ,

0 ≤ αi, βi ≤ νi, then

1. P ≤ Q if and only if αi ≥ βi for all i with 1 ≤ i ≤ m,

2. P < Q if and only if αi ≥ βi for all i and αi > βi for some i,

3. P ≡ Q if and only if α = β.

Proof: The statements of the theorem follow from Lemmas 8.7, 8.8, and 8.9.
�

In the notation of Theorem 8.10,
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Corollary 8.11 P is a tile of Q if and only if αi = βi + 1 for some i and
αj = βj for all j 6= i.

In the vein of Facts 8.5 and 8.6, we can reformulate the description of the
tile of relation:

Fact 8.12 Suppose α | n and β | n, then

βn ≺ αn⇐⇒ β = pα for some prime p.

8.3.4 Number of Levels

In studying hierarchical decompositions one of the key questions is the num-
ber of hierarchical levels in the cascaded product, or more precisely in the
case of the holonomy decomposition the height of the automaton.

Theorem 8.13 The height h of the decomposition of Rn is

h =
k∑

i=1

νi

where n = pν1

1 · · · pνm
m is the prime factorization for n.

Proof: We showed that the strict subduction and the inclusion relations are
along the multiplications by prime factors, therefore the maximum length
of strict chains in the tiling picture is the maximum length of the products
of the prime factors with multiplicity. �

8.3.5 Number of States

Another important question is how many points the holonomy components
act on. In the case of Rn observation suggested the following theorem:

Theorem 8.14 Let (Bh,Hh) be the top level component of the decomposi-
tion of Rn with height h, then

|B| =
k∑

i=1

pi

where n = pα1

1 · · · pαk

k is the prime factorization for n.
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Proof: The tiles of n are of the form pn + k, where p is a prime divisor of
n and k ∈ p. If p is not a prime, then the maximality condition of a tile
is not satisfied. Also, if p is prime but not a divisor of n, then pn = n, so
pn is not a tile. Since the elements of an equivalence class are determined
by addition (Lemma 8.7 and 8.9), the class consists of cosets of pn that are
pn + k, k ∈ p, since any element can be reached from any other just by
using addition modulo p. Therefore, an equivalence class of p has exactly
p elements. The equivalence classes induced by different primes cannot be
subduction related, since they are relative primes (see also Lemma 8.8).
Therefore we have as many equivalence classes as many prime divisors, and
each equivalence has as many elements as its corresponding prime, thus we
have the sum as in the theorem. �

This can be generalized by considering the fact that the equivalence class
representatives (the canonical ones in the form of αn with α | n) correspond
to principal ideals.

Theorem 8.15 Let Q = αn, Q ∈ I a canonical equivalence class repre-
sentative, and its holonomy component be (BQ,HQ). Then the number of
states is given by

|BQ| =
∑

pi

where n
α

= pα1

1 · · · pαk

k is the prime factorization for n
α
.

Proof: The key point of the proof is to show where does n
α

come from. Using
Fact 8.12, piαn ≺ αn iff piα | n, then dividing by α we get pi | n

α
. Then as

in Theorem 8.14 we count the number of tiles. �

8.3.6 Holonomy Group Components

Now we can characterize the invertible elements of S(Rn).

Proposition 8.16 π ∈ S(Rn) is invertible iff π can be represented as ax+
b, 0 < a < n, gcd(a, n) = 1.

We also can give a small generator set for each holonomy group compo-
nent.

Proposition 8.17 Let Q = αn, Q ∈ I a canonical equivalence class repre-
sentative, and its holonomy component be (BQ,HQ). Then HQ is generated
by the set of transformations defined by:

{ax : gcd(a,
n

α
) = 1} ∪ {+1}.

Now we present a theorem that basically says that the decomposition of
S(Rn) can be built from the unique top level components of the decompo-
sitions of certain smaller ones.
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Theorem 8.18 Let α | n and αn be a canonical representative of an equiv-
alence class in the tiling picture of S(Rn). Then the holonomy group com-
ponent of αn is isomorphic to the holonomy group component of m in the
decomposition of S(Rm),i.e.

(Bαn,Hαn) ∼= (Bm,Hm)

where m = n
α
.

Proof: We show the isomorphism, that explicit mappings from the tiles and
the holonomy group of m form a homomorphism which is one-to-one and
onto. In this case it will suffice to consider the action of the holonomy group
elements on m and αn.
Bijections. The two state sets are the following

m = {0, 1, . . . , n
α
− 1}

and
αn = {0, α, . . . , n− α}

Let’s consider the function φ(i) := αi which is obviously bijective. φ induces
a bijection of the powersets of αn and m as well. It follows that it also
induces a bijection of tiles as well (for details see Lemma 5.7).

Let π ∈ Hm, π : x 7→ ax + b mod m, where for all x ∈ m 0 ≤ a, b ≤
m − 1, a 6= 0, and gcd(a,m) = 1 for all x ∈ m, otherwise it collapses
according to Fact 8.5. Define φ : π 7→ π∗ as such that π∗ : y 7→ ay+αb mod
n for all y ∈ αn. π∗ is also bijective on αn.
φ is a homomorphism. We may assume:

Cond1 : 0 ≤ b, d < n
α

Cond2 : 0 < a, c < n
α

Cond3 : gcd(a, n
α
) = 1, gcd(c, n

α
) = 1

Let π = ax+ b, ρ = cx+ d ∈ Hm. We need to show that π∗ρ∗ = (πρ)∗.

((iφ)π∗)ρ∗ = c(a(αi) + αb) + αd

= caαi+ αcb+ αd

Note that iφ is an arbitrary element of αn.

(iφ)(πρ)∗ = (iα)(c(ax + b) + d)∗

= (iα)(cax + bc+ d) ∗
= caαi+ αcb+ αd

φ is one to one. Suppose π∗ = ρ∗, i.e. ay + αb = cy + αd mod n, y ∈ αn.
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Taking y = 0:

αb = αd mod n,

we have

0 ≤ αb, αd < n

due to Cond1. Since they are equivalent mod n and smaller than n, therefore
b = d.

So replacing d by b we have

ay + αb = cy + αb

ay = cy

Taking y = α:

aα = cα mod n

Again (due to Cond2 multiplied by α), a = c. Thus π = ρ.

φ is onto. Let γ = ay + b, γ ∈ Hαn. We show that γ is an image of some
π: γ = π∗. It is immediate that α|b, by considering the case of y = 0. Take
π = ax+ b

α
. Suppose π collapses states: ai = aj with i 6= j, i, j ∈ m, then

aαi = aαj mod n, so αi 6= αj mod n, whence αi 6= αj. Contradiction!

This establishes the isomorphism of permutation groups. �

8.3.7 The Lesson

The reason why we chose these rings for studying their decompositions is
that they are quite regular (hence the nice structure theorem), but they are
not trivial as well. We think that the results can be generalized or act as a
guiding metaphor.

The distinction between the additive and the multiplicative factor is
important in building the skeleton. Roughly speaking, the multiplicative
factors determine the poset of equivalence classes, while the additive factors
fill the equivalence classes. For future research, the question is whether
this distinction can be generalized to the distinction of permutations and
collapsing transformations for an arbitrary ts.

8.4 Formal Models of Understanding

The basic idea of applying decompositions as the formal models of under-
standing is that using the cascaded product we can answer questions about
the original automaton in a very convenient way. The main idea is that we
can use the wreath product as a coordinate system and the elements of the
components as values for the coordinates.
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8.4.1 Representations in Artificial Intelligence

According to the so-called Good Old-Fashioned Artificial Intelligence ap-
proach we have to build a system with a reasonably accurate representation
of its environment to make it behave intelligently. But this just does not
work. The hardwired model is rigid, even cannot cope with small changes
of the environment, or it the representation should contain all details with
all the possible changes, thus combinatorial explosions pop up. Therefore
the Artificial Intelligently (AI) community has come up with the strange
idea that we do it better without any representation [Bro99]. Clearly, this
is a fruitful method showing that one can have complex behavior without
complex inner structure. But it is also clear that we cannot get too far
without representations [Ste03]. Here we adopt the viewpoint that we often
need representations of the environment in order to realize artificial intelli-
gence, but the representation should be flexible and dynamically changing
over time and obtained by the artificial system on its own by recognizing
regularities of the real world around.

8.4.2 The ‘What to do?’ Problem

The main problem to be solved here is quite a natural one: given two states
of the original automaton, one is the state in which we are currently, the
other one is the state we would like to reach. The task is to give a word of
input symbols (sequence of actions) that induces the desired transformation
of states, if it the target state is reachable at all. One can imagine any kind
of intelligence (natural/artificial/alien) facing this kind of problem: knowing
what is the situation now and what is the desired goal, the intelligence has
to figure out what operations to carry out.

Of course for single states this can be done in the original automaton by
finding a path, but for subsets it would be lot more complicated. Also, here
we are interested in using the formal model of understanding instead of the
unanalyzed original automaton.

A good example is the algorithm we apply when we perform adding
numbers in decimal notation. Given the first operand and the result we can
calculate the second operand. However, this example is not general enough,
since decimal notation is a cascaded product of numbers, although in the
general case we do not necessarily have inverses all the time.

Buses and Trains

Using the skeleton we can answer some questions regarding the automaton
quite quickly. This way we show directly how the underlying structure of
the decomposition works. Here we proceed in solving the problem without
using the coordinate system.



87
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Figure 8.6: The partially ordered set of equivalence classes in the image
relation for the decomposition of the automaton discussed in Section 5.7.3.
The arrows denote the image relation of the class representatives (the trains,
see in the text). A label denotes a witness.
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{2,4}

{1,4}

wvw,v

{3,4}

wwwww,w

{2,3}

{1,2}

wwww,ww

{1,3}

wwwww,w

Figure 8.7: The buses for two equivalence classes. The first part of the label
denotes the mapping from a member to the representative, the second is
the map backwards. For instance, for going from {3, 4} to {2, 4} we apply
the word wwwww, from {2, 3} to {1, 2}, we apply wwww. Recall that
w = (2 3 1 4 4 4) permutes {1, 2, 3, 4}. Also note, that these words given by
the algorithm are not the shortest possible ones.

The leading metaphor is the following. If we would like to travel from
one village to another one far away, then first we take the local bus to the
closest train station, take the train to the station closest to the destination
village and catch a local bus again. Similarly, given P,Q ∈ I, (the two
distant villages), we need to make the following steps.

1. We go from P to P by the map −→mP :

P · −→mP = P .

2. If there exists a witness w in the image relation for P E Q, then we
go to the equivalence class representative of Q:

P · w = Q.

If Q is not an image of P , then we cannot go to Q from P .

3. We go from Q to Q by ←−mQ:

Q · ←−mQ = Q.

4. Finally we combine the maps (or concatenate the corresponding words)
and get the required transformation

P · −→mP · w · ←−mQ.



89

The required mappings are calculated during the decomposition, therefore
we get the answer in constant time. In the case of singletons this is the same
problem as finding a path in the state transition graph of the automaton.

Let’s see this on an example. Consider the tiling picture on Fig. 5.4
again. Looking at the poset of the equivalence classes shows that there is
no train between the set {1, 2, 3} and {1, 3} (though it is subduction related
witnessed by the identity). As an other example consider {3, 4} and {1, 2}.
We know the train: yz · v. For the buses see Fig. 8.7. So putting together
trip we get wwwww · yz · v · wwww.

Using a Coordinate System

We’ve seen already what knowledge we can get by using the skeleton of an
automaton. The next step would be to provide access to these capabilities
by the help of the coordinate system of the cascaded product. The hierar-
chical coordinates for states and transformations can be considered as a nice
interface for any possible user (software, robot, human). But this has some
difficulties.

• Contrary to our example of adding numbers in decimal notation, in
general it is not the case that we have inverses in the holonomy com-
ponents. We do have constant maps at our disposal, but they may not
be usable due to issues with nonimage tiles (see Section 5.7.3).

• If we have a tuple of component actions (which we get after trying to
find out what actions should we take in the components in order to
achieve the desired state) we have two problems:

– Distinct cascaded transformations can produce the same actual
tuple of component actions, therefore the solution might not be
unique.

– Unlike the cascaded states, not all cascaded transformations have
preimages in the division. We may construct a cascaded transfor-
mation, for which we do not have a corresponding transformation
in the original automaton.

These problems imply that we end up in a computationally very incon-
venient situation, where we have to search the vast space of component
action combinations.

Examples

As a positive example, we can mention the residue class rings of modulo a
power of 2, since for R2n the holonomy method gives us the very common
binary representation. In this case there are no parallel components and the
two states on a level correspond to 0 and 1.
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{1}{3}{2}{0}

{0,2}{1,3}

{0,1,2,3} 2

1

0

Figure 8.8: The tiling picture of the holonomy decomposition of R4.

For instance in the case of the decomposition of R4 we can use the
following simplified notation (nb: this is the origin of the binary notation):
the states on the top levels are {0, 2} = 0 and {1, 3} = 1, on the first level
they are {0} = 0 and {2} = 1. The tiling picture is on Fig. 8.8 and the
dependency functions are the following.

+̂1:

f+1
2 () = +1

f+1
1 (1) = +1

×̂2:

f×2
2 () = constant 0

f×2
1 (0) = constant 0

f×2
1 (1) = constant 1

×̂3:

f×3
1 (1) = +1

Knowing this it is easy to solve our problem using coordinates. For example
from the cascaded state (0, 1) we would like to go to the state (1, 0) (from 1
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to 2). On the top level we need the operation +1, and on the first level also.
Looking at the dependency function tables, tha answer is straightforward:
we need +̂1. Continuing the search we finds that ×̂2 is also a good solution,
though it uses only constant maps.

Starting from (0, 0) and going to the state (1, 0) (from 0 to 2) is more
problematic, since we cannot find any cascaded transformation from the
dependency functions of the generator lifts. Therefore we need to start
generating the elements of the wreath product semigroup. In this particular
case we know that it will be +̂1 · +̂1, or +̂1 · ×̂2, but in a more general setup
we have no hint where to look for the required transformation. However,
this example suggests that if we had the dependency functions explicitly
available for all transformations in the cascaded ts, then we could easily
look for the required transformations.

For other integers it gives a bit more unusual representation. For instance
for R18 we have cascaded states in (2×3)× (3×5)×5, thus we have to deal
with determining in which parallel component we are. In this special case
it is still can be done manually (although it is quite cumbersome), since we
know a lot about the decomposition of these residue class rings. Moreover,
these are unusual representations (not decimal or binary or base n) for rings,
and they might be useful for computer algebra systems.

The examples discussed here are quite special and we used a lot of back-
ground knowledge of their structure. In the general case we have more com-
plicated problems. But despite the difficulties mentioned here, we firmly
believe that this is the way to go for the applications of hierarchical alge-
braic decompositions in artificial intelligence. Success of the approach is
illustrated already for the ring examples.

8.4.3 Capturing Learning

Given any phenomenon, first we obtain a finite description of it. This is
not yet understanding, since we need a theory, a coordinatization of the raw
data, so we make the hierarchical decomposition. But so far this is only
static, whereas the way we get to know the world is a dynamic process. The
description of the phenomenon, the observational data might get extended,
modified, or becomes more accurate. This change clearly affects the theory
itself (and vice versa the theory might give guidelines regarding what data to
collect). The growing knowledge forces us to revise or replace existing the-
ories. In this context, by learning we mean exactly this process of changing
understanding.

Our search of the space of decompositions in Section 8.2.1 showed that
small changes may give very different results, in that case in terms of the
number of hierarchical levels, thus clearly results in very different decompo-
sitions. For the time being we can conclude that the space of the holonomy
decompositions is very rugged, and needs closer inspection guided by more
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specific questions.

8.5 Summary

Here we further deepened our understanding of the holonomy decomposition
by studying examples of decompositions in a detailed way. We also showed
the difficulties of applying the holonomy decomposition method as the for-
mal models of understanding. The results of this chapter give directions for
future research.



Chapter 9

Achievements and Future

work

9.1 Contributions to Knowledge

At this point, before discussing the possible future directions of this research,
we should summarize what has been done in this particular work.

• Assessing feasibility of computational implementations for
the Krohn-Rhodes Theory. Although it is a very difficult problem
to generate algebraic decompositions of finite state automata, we have
shown that it is doable by using the computational power available
on today’s computers. At least, for the time being the software tools
can provide valuable raw data for the theoretical investigations of the
nature of these hierarchical decompositions.

• Developing a computational toolkit for the Krohn-Rhodes
Theory. Two different proof technique were implemented evaluated
in this work: the V ∪ T and the holonomy method. Due to its itera-
tive algorithm the V ∪T method gives such redundant decompositions,
which are not usable except in special cases for some theoretical re-
search. Therefore the holonomy method was chosen for a more detailed
study and for a more capable computational implementation.

• Detailed study of the holonomy decomposition. We have de-
scribed a constructive proof of the holonomy decomposition in such
a detailed way (several explaining lemmas before bigger proofs, sim-
plified notation, etc.), that understanding the main theorem or devel-
oping its computational implementations should be easy after reading
this proof.

Writing this version of the proof yielded a small but useful theoretical
result: in the case of the holonomy decomposition every cascaded state

93
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is a lift of some state in the original automaton. This was not known
before and it makes a proof shorter.

• New methods for constructing holonomy group components.
During the implementation we developed two different methods (be-
yond the trivial brute force solutions) for locating the holonomy groups
in the characteristic semigroup. One uses techniques from formal lan-
guage theory, while the other one uses the hierarchical dependency
structure of the holonomy decomposition.

• Visualization of the structure of the holonomy decomposi-
tion. The automatically generated diagrams (tiling picture, tile au-
tomata, etc.) provide a very easy way of understanding the inner
workings of holonomy decomposition.

• Initial exploration and key examples. With the computational
tool available it had become possible to do systematic explorations of
the vast space of holonomy decompositions.

With random and guided search we could find interesting long decom-
positions, we also find a provably sharp upper bound on size of the
state set of a holonomy component.

Our exploration of finite rings of integers modulo n yielded a nice
structural theorem for their decompositions.

We present numerous examples, and they serve two different purposes.
First, they demonstrate important features of constructions, defini-
tions, or proofs. Secondly, some examples pinpoint some crucial prob-
lems or give good intuitions, which might be in the focus of the future
research.

9.2 Possible Future Research Directions

Since there can be many possible research projects utilizing the computa-
tional tools for the Krohn-Rhodes Theory, we focus here on those questions
of efficient computing of the holonomy decomposition, that have the highest
priority.

Efficient partial calculation of I. In Section 7.3.2 we have shown that
we do not need the full extended set of images in order to calculate
the holonomy decomposition. However the partial calculation of I is
not yet solved due to the problem of nonimage tiles (Section 5.7.3).

Relationship between generator sets. The dependency function based
method gives us generator sets for the holonomy components, which
are comparable to the original generator set regarding their size. But
we have to make the relation more precise.
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Working with coordinates. We showed the potential of holonomy de-
compositions to serve as formal models of understanding (buses and
trains in Section 8.4.2), but it is still a question how to use its “inter-
face” efficiently. We need to find effective algorithms for manipulating
coordinates on purpose.

More examples. We still have only considered very few examples of fruit-
ful application areas of automated holonomy decompositions.

9.3 Exploring a New Landscape

Philosophy is about questions, not about answers. Any philosophical treatise
claiming to have firm answers is suspicious. Science is different, but not
entirely. The value of good answers is not doubtful, but good questions
pregnant with important answers are also vital for scientific development.

Here we opened up a vast area for further research. As a final phase of
developing the Krohn-Rhodes Theory we adapted the holonomy method for
a computational implementation. Having a working computational tool is
essential for the further development of the theory. Like with telescope or
microscope, with the software we can see things which we could not glimpse
before. Despite the limitations of the current tool it is already far far beyond
the capabilities of the pencil and paper method. Of course, we do not mean
replacing the classical mathematical method, we just supply it with more
substantial data to work on.

With the computational implementation at hand, now we can ask count-
less questions such as ‘What is the hierarchical structure of this phenomenon
or what are the building blocks of that thing?’. We can examine new aspects
of well-known structures, as we did in the case of finite integer residue class
rings. Or we can attack problems where our knowledge is close to nothing.
For instance observing evolutionary development in artificial life systems
needs an understanding of how the individuals reuse and change existing
components, measuring the complexity of the evolved organisms.

• The holy grail of finite semigroup theory is determining and efficiently
computing Krohn-Rhodes Complexity (or group complexity). The
computational tools are clearly not for solving this problem, but seeing
actual decompositions, knowing the components may help in determin-
ing the KR complexity of particular examples.

• As a ‘bootstrap’ process the computational tool can be used for de-
composing well-known structures (as we did in the case of finite residue
class rings of integer of modulo n). This might seen to be a ‘hide and
seek’ type game: we hide something in the bush, then happily find it.
But meanwhile we can get useful knowledge about how hierarchical
structure encodes an understanding of the system.



96 Chapter 9. Achievements and Future work

All we need now is to repeat our starting statement, and after this long
trip we made the significance of the sentence should be apparent.

For any finite system a working hierarchical model can be generated au-
tomatically.



Appendix A

Decompositions of Finite

Residue Class Rings of

Integers Modulo n, up to

n = 20

The holonomy decompositions of first 20 nontrivial residue class rings of
of integers Z. Note that the numbers of levels corresponds to the number
of prime factors of n with multiplicities. The number of states at the top
hierarchical level (rightmost) equals the sum of primes dividing n. It is also
worth noting how the top level components are reused in the decomposition
of bigger rings. For instance the top level component of the decomposition
of R5 appears in the decompositions of R10, R15 and R20.
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Appendix A. Decompositions of Finite Residue Class Rings of Integers

Modulo n, up to n = 20

Ring Levels |I| Holonomy Decomposition

R2 1 3 (2, S2)

R3 1 4 (3, S3)

R4 2 7 (2, C2) o (2, C2)

R5 1 6 (5, G5:4)

R6 2 12 ((2, C2)× (3, S3)) o (5, D12)

R7 1 8 (7, G7:6)

R8 3 15 (2, S2) o (2, S2) o (2, S2)

R9 2 13 (3, S3) o (3, S3)

R10 2 18 ((2, C2)× (5, G5:4)) o (7, G40)

R11 1 12 (11, G11:10)

R12 3 28 ((2, C2)× (3, S3)) o ((2, C2)× (5, D12)) o (5, D12)

R13 1 14 (13, G13:12)

R14 2 24 ((2, C2)× (7, G7:6)) o (9, G84)

R15 2 24 ((3, S3)× (5, G5:4)) o (8, G120)

R16 4 31 (2, S2) o (2, S2) o (2, S2) o (2, S2)

R17 1 18 (17, G17:16)

R18 3 39 ((2, C2)× (3, S3)) o ((3, S3)× (5, D12)) o (5, D12)

R19 1 20 (19, G19:18)

R20 3 42 ((2, C2)× (5, G5:4)) o ((2, C2)× (7, G40)) o (7, G40)



Appendix B

Dilworth’s Theorem

The following very useful theorem establishes an important connection be-
tween the width of a partially ordered set and its chain decomposition. A
chain is a subset of the partially ordered set in which every pair of elements
is comparable. An antichain is a subset of the partial order in which no two
elements are comparable.

Theorem B.1 (Dilworth’s Theorem) Let P = (A,≤) be a partial order.
Then the minimum number of chains needed to cover A equals the maximum
number of elements in an antichain.

The original proof is in [Dil50], and a very short proof can be found in
[Tve67]. In the context of directed graphs the theorem is also presented in
[BJG02], and in the context of lattices and orders in [DP02].
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Appendix C

Related Publications

PUBLICATIONS

1. Attila Egri-Nagy, C. L. Nehaniv: Cycle Structure in Automata
and the Holonomy Decomposition, Acta Cybernetica, (in press)

2. Attila Egri-Nagy, C. L. Nehaniv: Algebraic Hierarchical Decom-
position of Finite State Automata: Comparison of Implemen-
tations for Krohn-Rhodes Theory (poster) CIAA 2004. Ninth
International Conference on Implementation and Application of Au-
tomata, LNCS 3317. 315-316.

CONFERENCE PRESENTATIONS

1. WSA 2005,Workshop on Semigroups and Automata, Joint Satellite
Workshop to ICALP’05 and CSL 2005, Lisbon, July 16th, 2005, Fi-
nite residue class rings of integers modulo n from the view-
point of global semigroup theory

2. CSL2005, International Conference on Semigroups and Languages In
Honour of the 65 th birthday of Donald B. McAlister, July 12,13, 14
and 15, 2005, Lisboa, PORTUGAL, Exploration of the Space of
Finite State Automata Using the Holonomy Decomposition

3. BCTCS 2005, 21st British Colloquium for Theoretical Computer
Science, 22-24 March 2005, University of Nottingham, UK, Alge-
braic Decompositions of Finite Automata and Formal Models
of Understanding. Abstract published in Bulletin of the European
Association for Theoretical Computer Science (EATCS), Number 86,
p246., June 2005.

4. CIAA 2004, Ninth International Conference on Implementation and
Application of Automata, Queen’s University, Kingston, Ontario, Canada,
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July 22-24, 2004, Algebraic Hierarchical Decomposition of Fi-
nite State Automata: Comparison of Implementations for
Krohn-Rhodes Theory, (poster)

5. CS2, The Fourth Conference of PhD Students in Computer Science,
Szeged, Hungary, July 1-4, 2004, Holonomy Decomposition of Fi-
nite State Automata

6. MACS 2004, 5th Joint Conference on Mathematics and Computer
Science June 9-12, 2004, Debrecen, Hungary, Algebraic Decompo-
sitions of Finite State Automata and Formal Models of Un-
derstanding



Appendix D

Software Architecture

D.1 Grasp

The V ∪T method was implemented as an external package for GAP [gap02].
It implements a function which returns the list of the cascaded components
of the decomposition of a ts. The iterative implementation of this function
is the literal translation of the proof of Lemma 4.1.

D.2 jGrasp

The software tool for implementing the holonomy decomposition has a more
complicated architecture and it is a lot more capable. The tool consists of
the following interacting packages:

The core system. This part is written in the Java2 language and it is
responsible for the main calculations of the decompositions. It has the
following subsystems:

tsengine Representations and basic algorithms for handling transfor-
mations, words, and semigroups.

decomposer Using the functionality of tsengine the algorithms for
the decompositions are implemented separately. This part con-
tains the algorithms for calculating the image and subduction
relations, for constructing the skeleton, for constructing holon-
omy groups, for recording dependency function entries, and so
on.

io The input and the output of the system are in text files and this
subsystem is responsible for handling these files.

Visualization. The core system generates the definitions of the graphs to
be displayed and the actual figures are rendered by GraphViz [EGK+03].
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Group algorithms. We use GAP for classifying the holonomy group com-
ponents.

Execution. The execution of the decomposition and generating the out-
put diagrams are coordinated by UNIX shell-scripts.

jGrasp has other functionalities as well (calculating the micro struc-
ture of transformations (functional digraphs), exploring one-point mutation
neighbourhood of transformation semigroups, etc.), but currently the main
functionality is the decomposition of a ts given by its generator transfor-
mations. Future development should concentrate on making the decompo-
sition process more interactively accessible, probably by implementing the
core system in GAP.

The latest information about the software toolkits described here can be
found on the website http://graspermachine.sf.net.
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Appendix E

Glossary of Symbols

≤,E,≺ subduction, image, tile of relations
×, o direct, wreath products
˜ being a lift of a state or transformation
1 the identity element
1A the identity transformation on the set A
A,B automata
AQ the tile automaton of Q
BP the set of tiles of P
Bi state set of the component on level i
Bi an element of Bi

A,B state sets
a, b states
(A,S), (B, T ) transformation semigroups
(A,SI) (A,S ∪ {1A})
n the set of integers {0, 1, . . . , n− 1}
Cn the cyclic group on n points
Dn the dihedral group with order n
D(A) the state transition graph of A
δ state transition function
EQ union of equivalence classes having elements in BQ

f i
s dependency function of s on level i
Gn:k a semidirect product Cn o Ck

GQ permutator group of Q
I the extended set of images
HQ holonomy group of Q
h(P ) the height of P
im(t) the image set of transformation t
L,R,J Green’s relations
−→mP mapping from P to P
←−mP mapping from P to P
P,Q elements of I



106 Appendix E. Glossary of Symbols

S, T semigroups
s, t elements of semigroups (transformations)
σ(P,B) selector function
σ̂(P,′B) inverse selector function
TA, Tn full transformation semigroup on the set A, on n
X,Y alphabets
X+, X∗ the free semigroup, monoid on X
x, y, z input symbols
v, w, u words
wPQ a witness for P ≤ Q√
w the root of word w
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